Cargando…
EPypes: a framework for building event-driven data processing pipelines
Many data processing systems are naturally modeled as pipelines, where data flows though a network of computational procedures. This representation is particularly suitable for computer vision algorithms, which in most cases possess complex logic and a big number of parameters to tune. In addition,...
Autores principales: | Semeniuta, Oleksandr, Falkman, Petter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924702/ https://www.ncbi.nlm.nih.gov/pubmed/33816829 http://dx.doi.org/10.7717/peerj-cs.176 |
Ejemplares similares
-
Subset-based stereo calibration method optimizing triangulation accuracy
por: Semeniuta, Oleksandr
Publicado: (2021) -
Event-driven industrial robot control architecture for the Adept V+ platform
por: Semeniuta, Oleksandr, et al.
Publicado: (2019) -
Neural noiseprint transfer: a generic noiseprint-based counter forensics framework
por: Elliethy, Ahmed
Publicado: (2023) -
A video summarization framework based on activity attention modeling using deep features for smart campus surveillance system
por: Muhammad, Wasim, et al.
Publicado: (2022) -
Protection of the patient data against intentional attacks using a hybrid robust watermarking code
por: Nagm, Ahmad, et al.
Publicado: (2021)