Cargando…
Application of deep autoencoder as an one-class classifier for unsupervised network intrusion detection: a comparative evaluation
The ever-increasing use of internet has opened a new avenue for cybercriminals, alarming the online businesses and organization to stay ahead of evolving thread landscape. To this end, intrusion detection system (IDS) is deemed as a promising defensive mechanism to ensure network security. Recently,...
Autores principales: | Vaiyapuri, Thavavel, Binbusayyis, Adel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924711/ https://www.ncbi.nlm.nih.gov/pubmed/33816977 http://dx.doi.org/10.7717/peerj-cs.327 |
Ejemplares similares
-
Comprehensive analysis and recommendation of feature evaluation measures for intrusion detection
por: Binbusayyis, Adel, et al.
Publicado: (2020) -
An investigation and comparison of machine learning approaches for intrusion detection in IoMT network
por: Binbusayyis, Adel, et al.
Publicado: (2022) -
Analysis of Autoencoders for Network Intrusion Detection †
por: Song, Youngrok, et al.
Publicado: (2021) -
A Lightweight Intelligent Network Intrusion Detection System Using One-Class Autoencoder and Ensemble Learning for IoT
por: Yao, Wenbin, et al.
Publicado: (2023) -
A novel traffic optimization method using GRU based deep neural network for the IoV system
por: Wen, Wu, et al.
Publicado: (2023)