Cargando…
A Sparse-Modeling Based Approach for Class Specific Feature Selection
In this work, we propose a novel Feature Selection framework called Sparse-Modeling Based Approach for Class Specific Feature Selection (SMBA-CSFS), that simultaneously exploits the idea of Sparse Modeling and Class-Specific Feature Selection. Feature selection plays a key role in several fields (e....
Autores principales: | Nardone, Davide, Ciaramella, Angelo, Staiano, Antonino |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924712/ https://www.ncbi.nlm.nih.gov/pubmed/33816890 http://dx.doi.org/10.7717/peerj-cs.237 |
Ejemplares similares
-
A combined test for feature selection on sparse metaproteomics data—an alternative to missing value imputation
por: Plancade, Sandra, et al.
Publicado: (2022) -
Data integration by fuzzy similarity-based hierarchical clustering
por: Ciaramella, Angelo, et al.
Publicado: (2020) -
Sparse bayesian learning for genomic selection in yeast
por: Ayat, Maryam, et al.
Publicado: (2022) -
Review of feature selection approaches based on grouping of features
por: Kuzudisli, Cihan, et al.
Publicado: (2023) -
The impact of feature selection on one and two-class classification performance for plant microRNAs
por: Khalifa, Waleed, et al.
Publicado: (2016)