Cargando…
Forecasting Bitcoin closing price series using linear regression and neural networks models
In this article we forecast daily closing price series of Bitcoin, Litecoin and Ethereum cryptocurrencies, using data on prices and volumes of prior days. Cryptocurrencies price behaviour is still largely unexplored, presenting new opportunities for researchers and economists to highlight similariti...
Autores principales: | Uras, Nicola, Marchesi, Lodovica, Marchesi, Michele, Tonelli, Roberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924725/ https://www.ncbi.nlm.nih.gov/pubmed/33816930 http://dx.doi.org/10.7717/peerj-cs.279 |
Ejemplares similares
-
A new model for learning-based forecasting procedure by combining k-means clustering and time series forecasting algorithms
por: Hartomo, Kristoko Dwi, et al.
Publicado: (2021) -
A hybrid forecasting model using LSTM and Prophet for energy consumption with decomposition of time series data
por: Arslan, Serdar
Publicado: (2022) -
A combined model for short-term wind speed forecasting based on empirical mode decomposition, feature selection, support vector regression and cross-validated lasso
por: Wang, Tao
Publicado: (2021) -
A game-theoretic model for the classification of selected oil companies’ price changes
por: Lung, Rodica-Ioana, et al.
Publicado: (2023) -
Empirical mode decomposition using deep learning model for financial market forecasting
por: Jin, Zebin, et al.
Publicado: (2022)