Cargando…
MKL-GRNI: A parallel multiple kernel learning approach for supervised inference of large-scale gene regulatory networks
High throughput multi-omics data generation coupled with heterogeneous genomic data fusion are defining new ways to build computational inference models. These models are scalable and can support very large genome sizes with the added advantage of exploiting additional biological knowledge from the...
Autores principales: | Wani, Nisar, Raza, Khalid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924726/ https://www.ncbi.nlm.nih.gov/pubmed/33817013 http://dx.doi.org/10.7717/peerj-cs.363 |
Ejemplares similares
-
ksrMKL: a novel method for identification of kinase–substrate relationships using multiple kernel learning
por: Wang, Minghui, et al.
Publicado: (2017) -
Prediction of post-translational modification sites using multiple kernel support vector machine
por: Wang, BingHua, et al.
Publicado: (2017) -
A non-linear reverse-engineering method for inferring genetic regulatory networks
por: Wu, Siyuan, et al.
Publicado: (2020) -
Influence of the experimental design of gene expression studies on the inference of gene regulatory networks: environmental factors
por: Emmert-Streib, Frank
Publicado: (2013) -
Intracellular and Intercellular Gene Regulatory Network Inference From Time-Course Individual RNA-Seq
por: Kashima, Makoto, et al.
Publicado: (2021)