Cargando…

Positive interactions within and between populations decrease the likelihood of evolutionary rescue

Positive interactions, including intraspecies cooperation and interspecies mutualisms, play crucial roles in shaping the structure and function of many ecosystems, ranging from plant communities to the human microbiome. While the evolutionary forces that form and maintain positive interactions have...

Descripción completa

Detalles Bibliográficos
Autores principales: Goldberg, Yaron, Friedman, Jonathan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924792/
https://www.ncbi.nlm.nih.gov/pubmed/33600401
http://dx.doi.org/10.1371/journal.pcbi.1008732
_version_ 1783659164986245120
author Goldberg, Yaron
Friedman, Jonathan
author_facet Goldberg, Yaron
Friedman, Jonathan
author_sort Goldberg, Yaron
collection PubMed
description Positive interactions, including intraspecies cooperation and interspecies mutualisms, play crucial roles in shaping the structure and function of many ecosystems, ranging from plant communities to the human microbiome. While the evolutionary forces that form and maintain positive interactions have been investigated extensively, the influence of positive interactions on the ability of species to adapt to new environments is still poorly understood. Here, we use numerical simulations and theoretical analyses to study how positive interactions impact the likelihood that populations survive after an environment deteriorates, such that survival in the new environment requires quick adaptation via the rise of new mutants—a scenario known as evolutionary rescue. We find that the probability of evolutionary rescue in populations engaged in positive interactions is reduced significantly. In cooperating populations, this reduction is largely due to the fact that survival may require at least a minimal number of individuals, meaning that adapted mutants must arise and spread before the population declines below this threshold. In mutualistic populations, the rescue probability is decreased further due to two additional effects—the need for both mutualistic partners to adapt to the new environment, and competition between the two species. Finally, we show that the presence of cheaters reduces the likelihood of evolutionary rescue even further, making it extremely unlikely. These results indicate that while positive interactions may be beneficial in stable environments, they can hinder adaptation to changing environments and thereby elevate the risk of population collapse. Furthermore, these results may hint at the selective pressures that drove co-dependent unicellular species to form more adaptable organisms able to differentiate into multiple phenotypes, including multicellular life.
format Online
Article
Text
id pubmed-7924792
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-79247922021-03-10 Positive interactions within and between populations decrease the likelihood of evolutionary rescue Goldberg, Yaron Friedman, Jonathan PLoS Comput Biol Research Article Positive interactions, including intraspecies cooperation and interspecies mutualisms, play crucial roles in shaping the structure and function of many ecosystems, ranging from plant communities to the human microbiome. While the evolutionary forces that form and maintain positive interactions have been investigated extensively, the influence of positive interactions on the ability of species to adapt to new environments is still poorly understood. Here, we use numerical simulations and theoretical analyses to study how positive interactions impact the likelihood that populations survive after an environment deteriorates, such that survival in the new environment requires quick adaptation via the rise of new mutants—a scenario known as evolutionary rescue. We find that the probability of evolutionary rescue in populations engaged in positive interactions is reduced significantly. In cooperating populations, this reduction is largely due to the fact that survival may require at least a minimal number of individuals, meaning that adapted mutants must arise and spread before the population declines below this threshold. In mutualistic populations, the rescue probability is decreased further due to two additional effects—the need for both mutualistic partners to adapt to the new environment, and competition between the two species. Finally, we show that the presence of cheaters reduces the likelihood of evolutionary rescue even further, making it extremely unlikely. These results indicate that while positive interactions may be beneficial in stable environments, they can hinder adaptation to changing environments and thereby elevate the risk of population collapse. Furthermore, these results may hint at the selective pressures that drove co-dependent unicellular species to form more adaptable organisms able to differentiate into multiple phenotypes, including multicellular life. Public Library of Science 2021-02-18 /pmc/articles/PMC7924792/ /pubmed/33600401 http://dx.doi.org/10.1371/journal.pcbi.1008732 Text en © 2021 Goldberg, Friedman http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Goldberg, Yaron
Friedman, Jonathan
Positive interactions within and between populations decrease the likelihood of evolutionary rescue
title Positive interactions within and between populations decrease the likelihood of evolutionary rescue
title_full Positive interactions within and between populations decrease the likelihood of evolutionary rescue
title_fullStr Positive interactions within and between populations decrease the likelihood of evolutionary rescue
title_full_unstemmed Positive interactions within and between populations decrease the likelihood of evolutionary rescue
title_short Positive interactions within and between populations decrease the likelihood of evolutionary rescue
title_sort positive interactions within and between populations decrease the likelihood of evolutionary rescue
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924792/
https://www.ncbi.nlm.nih.gov/pubmed/33600401
http://dx.doi.org/10.1371/journal.pcbi.1008732
work_keys_str_mv AT goldbergyaron positiveinteractionswithinandbetweenpopulationsdecreasethelikelihoodofevolutionaryrescue
AT friedmanjonathan positiveinteractionswithinandbetweenpopulationsdecreasethelikelihoodofevolutionaryrescue