Cargando…
Bayesian parameter estimation for automatic annotation of gene functions using observational data and phylogenetic trees
Gene function annotation is important for a variety of downstream analyses of genetic data. But experimental characterization of function remains costly and slow, making computational prediction an important endeavor. Phylogenetic approaches to prediction have been developed, but implementation of a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924801/ https://www.ncbi.nlm.nih.gov/pubmed/33600408 http://dx.doi.org/10.1371/journal.pcbi.1007948 |
_version_ | 1783659167072911360 |
---|---|
author | Vega Yon, George G. Thomas, Duncan C. Morrison, John Mi, Huaiyu Thomas, Paul D. Marjoram, Paul |
author_facet | Vega Yon, George G. Thomas, Duncan C. Morrison, John Mi, Huaiyu Thomas, Paul D. Marjoram, Paul |
author_sort | Vega Yon, George G. |
collection | PubMed |
description | Gene function annotation is important for a variety of downstream analyses of genetic data. But experimental characterization of function remains costly and slow, making computational prediction an important endeavor. Phylogenetic approaches to prediction have been developed, but implementation of a practical Bayesian framework for parameter estimation remains an outstanding challenge. We have developed a computationally efficient model of evolution of gene annotations using phylogenies based on a Bayesian framework using Markov Chain Monte Carlo for parameter estimation. Unlike previous approaches, our method is able to estimate parameters over many different phylogenetic trees and functions. The resulting parameters agree with biological intuition, such as the increased probability of function change following gene duplication. The method performs well on leave-one-out cross-validation, and we further validated some of the predictions in the experimental scientific literature. |
format | Online Article Text |
id | pubmed-7924801 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-79248012021-03-10 Bayesian parameter estimation for automatic annotation of gene functions using observational data and phylogenetic trees Vega Yon, George G. Thomas, Duncan C. Morrison, John Mi, Huaiyu Thomas, Paul D. Marjoram, Paul PLoS Comput Biol Research Article Gene function annotation is important for a variety of downstream analyses of genetic data. But experimental characterization of function remains costly and slow, making computational prediction an important endeavor. Phylogenetic approaches to prediction have been developed, but implementation of a practical Bayesian framework for parameter estimation remains an outstanding challenge. We have developed a computationally efficient model of evolution of gene annotations using phylogenies based on a Bayesian framework using Markov Chain Monte Carlo for parameter estimation. Unlike previous approaches, our method is able to estimate parameters over many different phylogenetic trees and functions. The resulting parameters agree with biological intuition, such as the increased probability of function change following gene duplication. The method performs well on leave-one-out cross-validation, and we further validated some of the predictions in the experimental scientific literature. Public Library of Science 2021-02-18 /pmc/articles/PMC7924801/ /pubmed/33600408 http://dx.doi.org/10.1371/journal.pcbi.1007948 Text en © 2021 Vega Yon et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Vega Yon, George G. Thomas, Duncan C. Morrison, John Mi, Huaiyu Thomas, Paul D. Marjoram, Paul Bayesian parameter estimation for automatic annotation of gene functions using observational data and phylogenetic trees |
title | Bayesian parameter estimation for automatic annotation of gene functions using observational data and phylogenetic trees |
title_full | Bayesian parameter estimation for automatic annotation of gene functions using observational data and phylogenetic trees |
title_fullStr | Bayesian parameter estimation for automatic annotation of gene functions using observational data and phylogenetic trees |
title_full_unstemmed | Bayesian parameter estimation for automatic annotation of gene functions using observational data and phylogenetic trees |
title_short | Bayesian parameter estimation for automatic annotation of gene functions using observational data and phylogenetic trees |
title_sort | bayesian parameter estimation for automatic annotation of gene functions using observational data and phylogenetic trees |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924801/ https://www.ncbi.nlm.nih.gov/pubmed/33600408 http://dx.doi.org/10.1371/journal.pcbi.1007948 |
work_keys_str_mv | AT vegayongeorgeg bayesianparameterestimationforautomaticannotationofgenefunctionsusingobservationaldataandphylogenetictrees AT thomasduncanc bayesianparameterestimationforautomaticannotationofgenefunctionsusingobservationaldataandphylogenetictrees AT morrisonjohn bayesianparameterestimationforautomaticannotationofgenefunctionsusingobservationaldataandphylogenetictrees AT mihuaiyu bayesianparameterestimationforautomaticannotationofgenefunctionsusingobservationaldataandphylogenetictrees AT thomaspauld bayesianparameterestimationforautomaticannotationofgenefunctionsusingobservationaldataandphylogenetictrees AT marjorampaul bayesianparameterestimationforautomaticannotationofgenefunctionsusingobservationaldataandphylogenetictrees |