Cargando…

Finding new edges: systems approaches to MTOR signaling

Cells have evolved highly intertwined kinase networks to finely tune cellular homeostasis to the environment. The network converging on the mechanistic target of rapamycin (MTOR) kinase constitutes a central hub that integrates metabolic signals and adapts cellular metabolism and functions to nutrit...

Descripción completa

Detalles Bibliográficos
Autores principales: Heberle, Alexander Martin, Rehbein, Ulrike, Rodríguez Peiris, Maria, Thedieck, Kathrin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924996/
https://www.ncbi.nlm.nih.gov/pubmed/33544134
http://dx.doi.org/10.1042/BST20190730
Descripción
Sumario:Cells have evolved highly intertwined kinase networks to finely tune cellular homeostasis to the environment. The network converging on the mechanistic target of rapamycin (MTOR) kinase constitutes a central hub that integrates metabolic signals and adapts cellular metabolism and functions to nutritional changes and stress. Feedforward and feedback loops, crosstalks and a plethora of modulators finely balance MTOR-driven anabolic and catabolic processes. This complexity renders it difficult — if not impossible — to intuitively decipher signaling dynamics and network topology. Over the last two decades, systems approaches have emerged as powerful tools to simulate signaling network dynamics and responses. In this review, we discuss the contribution of systems studies to the discovery of novel edges and modulators in the MTOR network in healthy cells and in disease.