Cargando…

Protease-Activated Receptor 1 Contributes to Microcirculation Failure and Tubular Damage in Renal Ischemia-Reperfusion Injury in Mice

Ischemia-reperfusion- (IR-) induced kidney injury is difficult to avoid during renal transplantation and robot-assisted partial nephrectomy. Renal IR injury is characterized by tubular damage, microcirculation failure, and inflammation, which coordinately augment renal injury; however, no specific t...

Descripción completa

Detalles Bibliográficos
Autores principales: Guan, Yu, Nakano, Daisuke, Li, Lei, Zheng, Haofeng, Nishiyama, Akira, Tian, Ye, Zhang, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925038/
https://www.ncbi.nlm.nih.gov/pubmed/33681367
http://dx.doi.org/10.1155/2021/6665714
Descripción
Sumario:Ischemia-reperfusion- (IR-) induced kidney injury is difficult to avoid during renal transplantation and robot-assisted partial nephrectomy. Renal IR injury is characterized by tubular damage, microcirculation failure, and inflammation, which coordinately augment renal injury; however, no specific treatment is available for these conditions. Protease-activated receptor-1 (PAR-1) and its ligand, thrombin, are involved in coagulation and were shown to be associated with epithelial cell injury. Here, we hypothesized that PAR-1 exaggerated renal IR-induced tubular cell damage and microcirculation failure and that pharmacological inhibition of PAR-1 by Q94 could prevent these injuries. Renal warm IR increased the expression of PAR-1 in the renal tubules. Q94 attenuated renal IR-induced changes and histopathological damage. Microcirculation failure analyzed by congestion in the histopathology and blood cell flow examined by intravital multiphoton microscopy were suppressed by Q94 treatment. Q94 also dramatically increased tubular cell proliferation despite the lower renal damage. Thrombin suppressed cell proliferation and induced apoptosis in the tubules; these effects were prevented by Q94 treatment. Taken together, PAR-1 was associated with renal IR injury. Inhibition of PAR-1 ameliorated injury possibly by improving renal microcirculation and tubular cell survival/proliferation.