Cargando…
Reinforcement Learning in Neurocritical and Neurosurgical Care: Principles and Possible Applications
Dynamic decision-making was essential in the clinical care of surgical patients. Reinforcement learning (RL) algorithm is a computational method to find sequential optimal decisions among multiple suboptimal options. This review is aimed at introducing RL's basic concepts, including three basic...
Autores principales: | Liu, Ying, Qiao, Nidan, Altinel, Yuksel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925047/ https://www.ncbi.nlm.nih.gov/pubmed/33680069 http://dx.doi.org/10.1155/2021/6657119 |
Ejemplares similares
-
Transcranial Doppler Ultrasound: Physical Principles and Principal Applications in Neurocritical Care Unit
por: D’Andrea, Antonello, et al.
Publicado: (2016) -
Assessment of Evidence Regarding Minimally Invasive Surgery vs. Conservative Treatment on Intracerebral Hemorrhage: A Trial Sequential Analysis of Randomized Controlled Trials
por: Zhou, Xiang, et al.
Publicado: (2020) -
Immunosenescence in neurocritical care
por: Inoue, Shigeaki, et al.
Publicado: (2018) -
Neurocritical care update
por: Kuroda, Yasuhiro
Publicado: (2016) -
Application of Pupillometry in Neurocritical Patients
por: Hsu, Chiu-Hao, et al.
Publicado: (2023)