Cargando…
Deep Residual Network in Network
Deep network in network (DNIN) model is an efficient instance and an important extension of the convolutional neural network (CNN) consisting of alternating convolutional layers and pooling layers. In this model, a multilayer perceptron (MLP), a nonlinear function, is exploited to replace the linear...
Autores principales: | Alaeddine, Hmidi, Jihene, Malek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925065/ https://www.ncbi.nlm.nih.gov/pubmed/33679966 http://dx.doi.org/10.1155/2021/6659083 |
Ejemplares similares
-
Detection of Anomalous Diffusion with Deep Residual Networks
por: Gajowczyk, Miłosz, et al.
Publicado: (2021) -
Predicting protein residue-residue contacts using random forests and deep networks
por: Luttrell, Joseph, et al.
Publicado: (2019) -
DeepDist: real-value inter-residue distance prediction with deep residual convolutional network
por: Wu, Tianqi, et al.
Publicado: (2021) -
Correction to: DeepDist: real‑value inter‑residue distance prediction with deep residual convolutional network
por: Wu, Tianqi, et al.
Publicado: (2021) -
Deep Supervised Residual Dense Network for Underwater Image Enhancement
por: Han, Yanling, et al.
Publicado: (2021)