Cargando…

Novel Oncolytic Herpes Simplex Virus 1 VC2 Promotes Long-Lasting, Systemic Anti-melanoma Tumor Immune Responses and Increased Survival in an Immunocompetent B16F10-Derived Mouse Melanoma Model

Oncolytic virotherapy (OVT) is now understood to be an immunotherapy that uses viral infection to liberate tumor antigens in an immunogenic context to promote the development of antitumor immune responses. The only currently FDA-approved oncolytic virotherapy, T-Vec, is a modified type 1 herpes simp...

Descripción completa

Detalles Bibliográficos
Autores principales: Uche, Ifeanyi Kingsley, Fowlkes, Natalie, Vu, Luan, Watanabe, Tatiane, Carossino, Mariano, Nabi, Rafiq, del Piero, Fabio, Rudd, Jared S., Kousoulas, Konstantin G., Rider, Paul J. F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925097/
https://www.ncbi.nlm.nih.gov/pubmed/33177208
http://dx.doi.org/10.1128/JVI.01359-20
_version_ 1783659218433212416
author Uche, Ifeanyi Kingsley
Fowlkes, Natalie
Vu, Luan
Watanabe, Tatiane
Carossino, Mariano
Nabi, Rafiq
del Piero, Fabio
Rudd, Jared S.
Kousoulas, Konstantin G.
Rider, Paul J. F.
author_facet Uche, Ifeanyi Kingsley
Fowlkes, Natalie
Vu, Luan
Watanabe, Tatiane
Carossino, Mariano
Nabi, Rafiq
del Piero, Fabio
Rudd, Jared S.
Kousoulas, Konstantin G.
Rider, Paul J. F.
author_sort Uche, Ifeanyi Kingsley
collection PubMed
description Oncolytic virotherapy (OVT) is now understood to be an immunotherapy that uses viral infection to liberate tumor antigens in an immunogenic context to promote the development of antitumor immune responses. The only currently FDA-approved oncolytic virotherapy, T-Vec, is a modified type 1 herpes simplex virus (HSV-1). While T-Vec is associated with limited response rates, its modest efficacy supports the continued development of novel OVT viruses. Herein, we test the efficacy of a recombinant HSV-1, VC2, as an OVT in a syngeneic B16F10-derived mouse model of melanoma. VC2 possesses mutations that block its ability to enter neurons via axonal termini. This greatly enhances its safety profile by precluding the ability of the virus to establish latent infection. VC2 has been shown to be a safe, effective vaccine against both HSV-1 and HSV-2 infection in mice, guinea pigs, and nonhuman primates. We found that VC2 slows tumor growth rates and that VC2 treatment significantly enhances survival of tumor-engrafted, VC2-treated mice over control treatments. VC2-treated mice that survived initial tumor engraftment were resistant to a second engraftment as well as colonization of lungs by intravenous introduction of tumor cells. We found that VC2 treatment induced substantial increases in intratumoral T cells and a decrease in immunosuppressive regulatory T cells. This immunity was critically dependent on CD8(+) T cells and less dependent on CD4(+) T cells. Our data provide significant support for the continued development of VC2 as an OVT for the treatment of human and animal cancers. IMPORTANCE Current oncolytic virotherapies possess limited response rates. However, when certain patient selection criteria are used, oncolytic virotherapy response rates have been shown to increase. This, in addition to the increased response rates of oncolytic virotherapy in combination with other immunotherapies, suggests that oncolytic viruses possess significant therapeutic potential for the treatment of cancer. As such, it is important to continue to develop novel oncolytic viruses as well as support basic research into their mechanisms of efficacy. Our data demonstrate significant clinical potential for VC2, a novel type 1 oncolytic herpes simplex virus. Additionally, due to the high rates of survival and the dependence on CD8(+) T cells for efficacy, our model will enable study of the immunological correlates of protection for VC2 oncolytic virotherapy and oncolytic virotherapy in general. Understanding the mechanisms of efficacious oncolytic virotherapy will inform the rational design of improved oncolytic virotherapies.
format Online
Article
Text
id pubmed-7925097
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-79250972021-07-13 Novel Oncolytic Herpes Simplex Virus 1 VC2 Promotes Long-Lasting, Systemic Anti-melanoma Tumor Immune Responses and Increased Survival in an Immunocompetent B16F10-Derived Mouse Melanoma Model Uche, Ifeanyi Kingsley Fowlkes, Natalie Vu, Luan Watanabe, Tatiane Carossino, Mariano Nabi, Rafiq del Piero, Fabio Rudd, Jared S. Kousoulas, Konstantin G. Rider, Paul J. F. J Virol Cellular Response to Infection Oncolytic virotherapy (OVT) is now understood to be an immunotherapy that uses viral infection to liberate tumor antigens in an immunogenic context to promote the development of antitumor immune responses. The only currently FDA-approved oncolytic virotherapy, T-Vec, is a modified type 1 herpes simplex virus (HSV-1). While T-Vec is associated with limited response rates, its modest efficacy supports the continued development of novel OVT viruses. Herein, we test the efficacy of a recombinant HSV-1, VC2, as an OVT in a syngeneic B16F10-derived mouse model of melanoma. VC2 possesses mutations that block its ability to enter neurons via axonal termini. This greatly enhances its safety profile by precluding the ability of the virus to establish latent infection. VC2 has been shown to be a safe, effective vaccine against both HSV-1 and HSV-2 infection in mice, guinea pigs, and nonhuman primates. We found that VC2 slows tumor growth rates and that VC2 treatment significantly enhances survival of tumor-engrafted, VC2-treated mice over control treatments. VC2-treated mice that survived initial tumor engraftment were resistant to a second engraftment as well as colonization of lungs by intravenous introduction of tumor cells. We found that VC2 treatment induced substantial increases in intratumoral T cells and a decrease in immunosuppressive regulatory T cells. This immunity was critically dependent on CD8(+) T cells and less dependent on CD4(+) T cells. Our data provide significant support for the continued development of VC2 as an OVT for the treatment of human and animal cancers. IMPORTANCE Current oncolytic virotherapies possess limited response rates. However, when certain patient selection criteria are used, oncolytic virotherapy response rates have been shown to increase. This, in addition to the increased response rates of oncolytic virotherapy in combination with other immunotherapies, suggests that oncolytic viruses possess significant therapeutic potential for the treatment of cancer. As such, it is important to continue to develop novel oncolytic viruses as well as support basic research into their mechanisms of efficacy. Our data demonstrate significant clinical potential for VC2, a novel type 1 oncolytic herpes simplex virus. Additionally, due to the high rates of survival and the dependence on CD8(+) T cells for efficacy, our model will enable study of the immunological correlates of protection for VC2 oncolytic virotherapy and oncolytic virotherapy in general. Understanding the mechanisms of efficacious oncolytic virotherapy will inform the rational design of improved oncolytic virotherapies. American Society for Microbiology 2021-01-13 /pmc/articles/PMC7925097/ /pubmed/33177208 http://dx.doi.org/10.1128/JVI.01359-20 Text en Copyright © 2021 Uche et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Cellular Response to Infection
Uche, Ifeanyi Kingsley
Fowlkes, Natalie
Vu, Luan
Watanabe, Tatiane
Carossino, Mariano
Nabi, Rafiq
del Piero, Fabio
Rudd, Jared S.
Kousoulas, Konstantin G.
Rider, Paul J. F.
Novel Oncolytic Herpes Simplex Virus 1 VC2 Promotes Long-Lasting, Systemic Anti-melanoma Tumor Immune Responses and Increased Survival in an Immunocompetent B16F10-Derived Mouse Melanoma Model
title Novel Oncolytic Herpes Simplex Virus 1 VC2 Promotes Long-Lasting, Systemic Anti-melanoma Tumor Immune Responses and Increased Survival in an Immunocompetent B16F10-Derived Mouse Melanoma Model
title_full Novel Oncolytic Herpes Simplex Virus 1 VC2 Promotes Long-Lasting, Systemic Anti-melanoma Tumor Immune Responses and Increased Survival in an Immunocompetent B16F10-Derived Mouse Melanoma Model
title_fullStr Novel Oncolytic Herpes Simplex Virus 1 VC2 Promotes Long-Lasting, Systemic Anti-melanoma Tumor Immune Responses and Increased Survival in an Immunocompetent B16F10-Derived Mouse Melanoma Model
title_full_unstemmed Novel Oncolytic Herpes Simplex Virus 1 VC2 Promotes Long-Lasting, Systemic Anti-melanoma Tumor Immune Responses and Increased Survival in an Immunocompetent B16F10-Derived Mouse Melanoma Model
title_short Novel Oncolytic Herpes Simplex Virus 1 VC2 Promotes Long-Lasting, Systemic Anti-melanoma Tumor Immune Responses and Increased Survival in an Immunocompetent B16F10-Derived Mouse Melanoma Model
title_sort novel oncolytic herpes simplex virus 1 vc2 promotes long-lasting, systemic anti-melanoma tumor immune responses and increased survival in an immunocompetent b16f10-derived mouse melanoma model
topic Cellular Response to Infection
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925097/
https://www.ncbi.nlm.nih.gov/pubmed/33177208
http://dx.doi.org/10.1128/JVI.01359-20
work_keys_str_mv AT ucheifeanyikingsley noveloncolyticherpessimplexvirus1vc2promoteslonglastingsystemicantimelanomatumorimmuneresponsesandincreasedsurvivalinanimmunocompetentb16f10derivedmousemelanomamodel
AT fowlkesnatalie noveloncolyticherpessimplexvirus1vc2promoteslonglastingsystemicantimelanomatumorimmuneresponsesandincreasedsurvivalinanimmunocompetentb16f10derivedmousemelanomamodel
AT vuluan noveloncolyticherpessimplexvirus1vc2promoteslonglastingsystemicantimelanomatumorimmuneresponsesandincreasedsurvivalinanimmunocompetentb16f10derivedmousemelanomamodel
AT watanabetatiane noveloncolyticherpessimplexvirus1vc2promoteslonglastingsystemicantimelanomatumorimmuneresponsesandincreasedsurvivalinanimmunocompetentb16f10derivedmousemelanomamodel
AT carossinomariano noveloncolyticherpessimplexvirus1vc2promoteslonglastingsystemicantimelanomatumorimmuneresponsesandincreasedsurvivalinanimmunocompetentb16f10derivedmousemelanomamodel
AT nabirafiq noveloncolyticherpessimplexvirus1vc2promoteslonglastingsystemicantimelanomatumorimmuneresponsesandincreasedsurvivalinanimmunocompetentb16f10derivedmousemelanomamodel
AT delpierofabio noveloncolyticherpessimplexvirus1vc2promoteslonglastingsystemicantimelanomatumorimmuneresponsesandincreasedsurvivalinanimmunocompetentb16f10derivedmousemelanomamodel
AT ruddjareds noveloncolyticherpessimplexvirus1vc2promoteslonglastingsystemicantimelanomatumorimmuneresponsesandincreasedsurvivalinanimmunocompetentb16f10derivedmousemelanomamodel
AT kousoulaskonstanting noveloncolyticherpessimplexvirus1vc2promoteslonglastingsystemicantimelanomatumorimmuneresponsesandincreasedsurvivalinanimmunocompetentb16f10derivedmousemelanomamodel
AT riderpauljf noveloncolyticherpessimplexvirus1vc2promoteslonglastingsystemicantimelanomatumorimmuneresponsesandincreasedsurvivalinanimmunocompetentb16f10derivedmousemelanomamodel