Cargando…
Machine learning-based prognostic modeling using clinical data and quantitative radiomic features from chest CT images in COVID-19 patients
OBJECTIVE: To develop prognostic models for survival (alive or deceased status) prediction of COVID-19 patients using clinical data (demographics and history, laboratory tests, visual scoring by radiologists) and lung/lesion radiomic features extracted from chest CT images. METHODS: Overall, 152 pat...
Autores principales: | Shiri, Isaac, Sorouri, Majid, Geramifar, Parham, Nazari, Mostafa, Abdollahi, Mohammad, Salimi, Yazdan, Khosravi, Bardia, Askari, Dariush, Aghaghazvini, Leila, Hajianfar, Ghasem, Kasaeian, Amir, Abdollahi, Hamid, Arabi, Hossein, Rahmim, Arman, Radmard, Amir Reza, Zaidi, Habib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925235/ https://www.ncbi.nlm.nih.gov/pubmed/33691201 http://dx.doi.org/10.1016/j.compbiomed.2021.104304 |
Ejemplares similares
-
Outcome prediction based on initial CT scan in COVID-19
por: Khosravi, Bardia, et al.
Publicado: (2021) -
COLI‐Net: Deep learning‐assisted fully automated COVID‐19 lung and infection pneumonia lesion detection and segmentation from chest computed tomography images
por: Shiri, Isaac, et al.
Publicado: (2021) -
High-dimensional multinomial multiclass severity scoring of COVID-19 pneumonia using CT radiomics features and machine learning algorithms
por: Shiri, Isaac, et al.
Publicado: (2022) -
Predictive value of initial CT scan for various adverse outcomes in patients with COVID-19 pneumonia
por: Khosravi, Bardia, et al.
Publicado: (2021) -
Machine learning-based diagnosis and risk classification of coronary artery disease using myocardial perfusion imaging SPECT: A radiomics study
por: Amini, Mehdi, et al.
Publicado: (2023)