Cargando…
Masi: A mechanical ventilator based on a manual resuscitator with telemedicine capabilities for patients with ARDS during the COVID-19 crisis
In this article, we introduce a portable and low-cost ventilator that could be rapidly manufactured, to meet the increasing demand of ventilators worldwide produced by COVID-19 pandemic. These ventilators should be rapidly deployable and with functional capabilities to manage COVID-19 patients with...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925236/ https://www.ncbi.nlm.nih.gov/pubmed/33681539 http://dx.doi.org/10.1016/j.ohx.2021.e00187 |
Sumario: | In this article, we introduce a portable and low-cost ventilator that could be rapidly manufactured, to meet the increasing demand of ventilators worldwide produced by COVID-19 pandemic. These ventilators should be rapidly deployable and with functional capabilities to manage COVID-19 patients with severe acute respiratory distress syndrome (ARDS). Our implementation offers robustness, safety and functionality absent in existing solutions to the ventilator shortage (i.e., telemonitoring, easy-to-disinfect, modularity) by maintaining simplicity. The design makes use of a manual resuscitator as the core respiration component activated by a compression mechanism which consist of two electronically controlled paddles. The quality measurements obtained after testing on a calibrated artificial lung demonstrate repeatability and accuracy exceeding human capabilities of manual ventilation. The complete design files are provided in the supplementary materials to facilitate ventilator production even in resource-limited settings. The implementation of this mechanical ventilator could eliminate device rationing or splitting to serve multiple patients on ICUs. |
---|