Cargando…

Validation of HPLC method for the determination of chemical andradiochemical purity of a (68)Ga-labelled EuK-Sub-kf-(3-iodo-y-) DOTAGA

The prostate-specific membrane antigen (PSMA) represents an ideal biomarker for molecular imaging. Various PSMA-targeted radioligands are available for prostate cancer imaging. In this study, labeling of PSMA I&T with (68)Ga, as well as validation of the radiochemical purity of the synthesis pro...

Descripción completa

Detalles Bibliográficos
Autores principales: UĞUR, Ayşe, ELÇİ, Şükrü Gökhan, YÜKSEL, Doğangün
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Scientific and Technological Research Council of Turkey 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925295/
https://www.ncbi.nlm.nih.gov/pubmed/33679149
http://dx.doi.org/10.3906/kim-2003-19
Descripción
Sumario:The prostate-specific membrane antigen (PSMA) represents an ideal biomarker for molecular imaging. Various PSMA-targeted radioligands are available for prostate cancer imaging. In this study, labeling of PSMA I&T with (68)Ga, as well as validation of the radiochemical purity of the synthesis product by reverse phase radio high-performance liquid chromatography (HPLC) method are intended. Since the standard procedure for the quality control (QC) was not available, definition of chemical and radiochemical purity of (68)Ga-PSMA I&T was carried out according to the Q2 (R1) ICH guideline. The standard QC tests were analyzed with Scintomics 8100 radio-HPLC system equipped with a radioactivity detector. The method was evaluated in terms of linearity, precision and accuracy, LOQ, robustness parameters, and specificity. To assess the radiochemical and chemical purity of (68)Ga-PSMA I&T, the developed method was validated to apply safely to patients. An excellent linearity was found between 1μg/mL and 30 μg/mL, with a limit of detection and limit of quantitation of 0.286 μg/mL and 0.866 μg/mL, respectively for (68)Ga-PSMA I&T. The recovery was 96.8 ± 3.8%. The quality control of the final product was performed many times with validated radio-HPLC method and was found to comply with ICH requirements, thus demonstrating the accuracy and robustness of the method for routine clinical practice.