Cargando…

4,4’-trimethylenedipiperidine as a nitrogen heterocycle solvent and/or catalyst: Liquid phase tandem Knoevenagel–Michael condensation

Liquid phase tandem Knoevenagel–Michael condensation of various aromatic and heteroaromatic aldehydes with barbituric acid or 2-thiobarbituric acid and malononitrile was studied in a one-pot three-component reaction. For the first time, TMDP was employed as a safe and efficient solvent and/or cataly...

Descripción completa

Detalles Bibliográficos
Autores principales: ZAHARANI, Lia, GHAFFARI KHALIGH, Nader, GORJIAN, Hayede, RAFIE JOHAN, Mohd
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Scientific and Technological Research Council of Turkey 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925320/
https://www.ncbi.nlm.nih.gov/pubmed/33679168
http://dx.doi.org/10.3906/kim-2010-41
_version_ 1783659256781733888
author ZAHARANI, Lia
GHAFFARI KHALIGH, Nader
GORJIAN, Hayede
RAFIE JOHAN, Mohd
author_facet ZAHARANI, Lia
GHAFFARI KHALIGH, Nader
GORJIAN, Hayede
RAFIE JOHAN, Mohd
author_sort ZAHARANI, Lia
collection PubMed
description Liquid phase tandem Knoevenagel–Michael condensation of various aromatic and heteroaromatic aldehydes with barbituric acid or 2-thiobarbituric acid and malononitrile was studied in a one-pot three-component reaction. For the first time, TMDP was employed as a safe and efficient solvent and/or catalyst in the liquid and aqueous ethanol medium, respectively, for the practical and eco-friendly Knoevenagel–Michael condensation. The reactions were carried out by using greener procedures, including a) the use of TMDP as an N-heterocycle organocatalyst in a green medium including water and ethanol (1:1 v/v) at reflux temperature, and b) the use of TMDP as a dual solvent-catalyst at 65 °C in the absence of any solvent. High to excellent yields of the desired pyrano[2,3- d ]pyrimidinones were obtained under the two earlier mentioned conditions. The current methodologies have advantages, including (a) avoiding hazardous, toxic, volatile, and flammable materials and solvents, (b) avoiding tedious processes, harsh conditions, and multiple steps for the preparation of catalysts, (c) using a less toxic and noncorrosive catalyst, (d) minimizing hazardous waste generation and simple workup process, and (e) high recyclability of TMDP. Another important result of this work is that the TMDP can be a promising alternative for toxic, volatile, and flammable base reagents such as piperidine and triethylamine in liquid phase organic syntheses owing to its unique properties such as being less toxic, nonflammable, and nonvolatile, and having a low melting point, broad liquid range temperature, high thermal stability, and safe handling and storage.
format Online
Article
Text
id pubmed-7925320
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Scientific and Technological Research Council of Turkey
record_format MEDLINE/PubMed
spelling pubmed-79253202021-03-04 4,4’-trimethylenedipiperidine as a nitrogen heterocycle solvent and/or catalyst: Liquid phase tandem Knoevenagel–Michael condensation ZAHARANI, Lia GHAFFARI KHALIGH, Nader GORJIAN, Hayede RAFIE JOHAN, Mohd Turk J Chem Article Liquid phase tandem Knoevenagel–Michael condensation of various aromatic and heteroaromatic aldehydes with barbituric acid or 2-thiobarbituric acid and malononitrile was studied in a one-pot three-component reaction. For the first time, TMDP was employed as a safe and efficient solvent and/or catalyst in the liquid and aqueous ethanol medium, respectively, for the practical and eco-friendly Knoevenagel–Michael condensation. The reactions were carried out by using greener procedures, including a) the use of TMDP as an N-heterocycle organocatalyst in a green medium including water and ethanol (1:1 v/v) at reflux temperature, and b) the use of TMDP as a dual solvent-catalyst at 65 °C in the absence of any solvent. High to excellent yields of the desired pyrano[2,3- d ]pyrimidinones were obtained under the two earlier mentioned conditions. The current methodologies have advantages, including (a) avoiding hazardous, toxic, volatile, and flammable materials and solvents, (b) avoiding tedious processes, harsh conditions, and multiple steps for the preparation of catalysts, (c) using a less toxic and noncorrosive catalyst, (d) minimizing hazardous waste generation and simple workup process, and (e) high recyclability of TMDP. Another important result of this work is that the TMDP can be a promising alternative for toxic, volatile, and flammable base reagents such as piperidine and triethylamine in liquid phase organic syntheses owing to its unique properties such as being less toxic, nonflammable, and nonvolatile, and having a low melting point, broad liquid range temperature, high thermal stability, and safe handling and storage. The Scientific and Technological Research Council of Turkey 2021-02-17 /pmc/articles/PMC7925320/ /pubmed/33679168 http://dx.doi.org/10.3906/kim-2010-41 Text en Copyright © 2021 The Author(s) This article is distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Article
ZAHARANI, Lia
GHAFFARI KHALIGH, Nader
GORJIAN, Hayede
RAFIE JOHAN, Mohd
4,4’-trimethylenedipiperidine as a nitrogen heterocycle solvent and/or catalyst: Liquid phase tandem Knoevenagel–Michael condensation
title 4,4’-trimethylenedipiperidine as a nitrogen heterocycle solvent and/or catalyst: Liquid phase tandem Knoevenagel–Michael condensation
title_full 4,4’-trimethylenedipiperidine as a nitrogen heterocycle solvent and/or catalyst: Liquid phase tandem Knoevenagel–Michael condensation
title_fullStr 4,4’-trimethylenedipiperidine as a nitrogen heterocycle solvent and/or catalyst: Liquid phase tandem Knoevenagel–Michael condensation
title_full_unstemmed 4,4’-trimethylenedipiperidine as a nitrogen heterocycle solvent and/or catalyst: Liquid phase tandem Knoevenagel–Michael condensation
title_short 4,4’-trimethylenedipiperidine as a nitrogen heterocycle solvent and/or catalyst: Liquid phase tandem Knoevenagel–Michael condensation
title_sort 4,4’-trimethylenedipiperidine as a nitrogen heterocycle solvent and/or catalyst: liquid phase tandem knoevenagel–michael condensation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925320/
https://www.ncbi.nlm.nih.gov/pubmed/33679168
http://dx.doi.org/10.3906/kim-2010-41
work_keys_str_mv AT zaharanilia 44trimethylenedipiperidineasanitrogenheterocyclesolventandorcatalystliquidphasetandemknoevenagelmichaelcondensation
AT ghaffarikhalighnader 44trimethylenedipiperidineasanitrogenheterocyclesolventandorcatalystliquidphasetandemknoevenagelmichaelcondensation
AT gorjianhayede 44trimethylenedipiperidineasanitrogenheterocyclesolventandorcatalystliquidphasetandemknoevenagelmichaelcondensation
AT rafiejohanmohd 44trimethylenedipiperidineasanitrogenheterocyclesolventandorcatalystliquidphasetandemknoevenagelmichaelcondensation