Cargando…
Sensitive determination of hydrazine using poly(phenolphthalein), Au nanoparticles and multiwalled carbon nanotubes modified glassy carbon electrode
This study reports a detailed analysis of an electrode material containing poly(phenolphthalein), carbon nanotubes and gold nanoparticles which shows superior catalytic effect towards to hydrazine oxidation in Britton–Robinson buffer (pH 10.0). Glassy carbon electrode was modified by electropolymeri...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Scientific and Technological Research Council of Turkey
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925322/ https://www.ncbi.nlm.nih.gov/pubmed/33679162 http://dx.doi.org/10.3906/kim-2009-12 |
_version_ | 1783659257232621568 |
---|---|
author | HATİP, Müge KOÇAK, Süleyman DURSUN, Zekerya |
author_facet | HATİP, Müge KOÇAK, Süleyman DURSUN, Zekerya |
author_sort | HATİP, Müge |
collection | PubMed |
description | This study reports a detailed analysis of an electrode material containing poly(phenolphthalein), carbon nanotubes and gold nanoparticles which shows superior catalytic effect towards to hydrazine oxidation in Britton–Robinson buffer (pH 10.0). Glassy carbon electrode was modified by electropolymerization of phenolphthalein (PP) monomer (poly(PP)/GCE) and the multiwalled carbon nanotubes (MWCNTs) was dropped on the surface. This modified surface was electrodeposited with gold nanoparticles (AuNPs/CNT/poly(PP)/GCE). The fabricated electrode was analysed the determination of hydrazine using cyclic voltammetry, linear sweep voltammetry and amperometry. The peak potential of hydrazine oxidation on bare GCE, poly(PP)/GCE, CNT/GCE, CNT/poly(PP)/GCE, and AuNPs/CNT/poly(PP)/GCE were observed at 596 mV, 342 mV, 320 mV, 313 mV, and 27 mV, respectively. A shift in the overpotential to more negative direction and an enhancement in the peak current indicated that the AuNPs/CNT/poly(PP)/GC electrode presented an efficient electrocatalytic activity toward oxidation of hydrazine. Modified electrodes were characterized with High-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Amperometric current responses in the low hydrazine concentration range of 0.25–13 µM at the AuNPs/CNT/poly(PP)/GCE. The limit of detection (LOD) value was obtained to be 0.083 µM. A modified electrode was applied to naturel samples for hydrazine determination. |
format | Online Article Text |
id | pubmed-7925322 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Scientific and Technological Research Council of Turkey |
record_format | MEDLINE/PubMed |
spelling | pubmed-79253222021-03-04 Sensitive determination of hydrazine using poly(phenolphthalein), Au nanoparticles and multiwalled carbon nanotubes modified glassy carbon electrode HATİP, Müge KOÇAK, Süleyman DURSUN, Zekerya Turk J Chem Article This study reports a detailed analysis of an electrode material containing poly(phenolphthalein), carbon nanotubes and gold nanoparticles which shows superior catalytic effect towards to hydrazine oxidation in Britton–Robinson buffer (pH 10.0). Glassy carbon electrode was modified by electropolymerization of phenolphthalein (PP) monomer (poly(PP)/GCE) and the multiwalled carbon nanotubes (MWCNTs) was dropped on the surface. This modified surface was electrodeposited with gold nanoparticles (AuNPs/CNT/poly(PP)/GCE). The fabricated electrode was analysed the determination of hydrazine using cyclic voltammetry, linear sweep voltammetry and amperometry. The peak potential of hydrazine oxidation on bare GCE, poly(PP)/GCE, CNT/GCE, CNT/poly(PP)/GCE, and AuNPs/CNT/poly(PP)/GCE were observed at 596 mV, 342 mV, 320 mV, 313 mV, and 27 mV, respectively. A shift in the overpotential to more negative direction and an enhancement in the peak current indicated that the AuNPs/CNT/poly(PP)/GC electrode presented an efficient electrocatalytic activity toward oxidation of hydrazine. Modified electrodes were characterized with High-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Amperometric current responses in the low hydrazine concentration range of 0.25–13 µM at the AuNPs/CNT/poly(PP)/GCE. The limit of detection (LOD) value was obtained to be 0.083 µM. A modified electrode was applied to naturel samples for hydrazine determination. The Scientific and Technological Research Council of Turkey 2021-02-17 /pmc/articles/PMC7925322/ /pubmed/33679162 http://dx.doi.org/10.3906/kim-2009-12 Text en Copyright © 2021 The Author(s) This article is distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Article HATİP, Müge KOÇAK, Süleyman DURSUN, Zekerya Sensitive determination of hydrazine using poly(phenolphthalein), Au nanoparticles and multiwalled carbon nanotubes modified glassy carbon electrode |
title | Sensitive determination of hydrazine using poly(phenolphthalein), Au nanoparticles and multiwalled carbon nanotubes modified glassy carbon electrode |
title_full | Sensitive determination of hydrazine using poly(phenolphthalein), Au nanoparticles and multiwalled carbon nanotubes modified glassy carbon electrode |
title_fullStr | Sensitive determination of hydrazine using poly(phenolphthalein), Au nanoparticles and multiwalled carbon nanotubes modified glassy carbon electrode |
title_full_unstemmed | Sensitive determination of hydrazine using poly(phenolphthalein), Au nanoparticles and multiwalled carbon nanotubes modified glassy carbon electrode |
title_short | Sensitive determination of hydrazine using poly(phenolphthalein), Au nanoparticles and multiwalled carbon nanotubes modified glassy carbon electrode |
title_sort | sensitive determination of hydrazine using poly(phenolphthalein), au nanoparticles and multiwalled carbon nanotubes modified glassy carbon electrode |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925322/ https://www.ncbi.nlm.nih.gov/pubmed/33679162 http://dx.doi.org/10.3906/kim-2009-12 |
work_keys_str_mv | AT hatipmuge sensitivedeterminationofhydrazineusingpolyphenolphthaleinaunanoparticlesandmultiwalledcarbonnanotubesmodifiedglassycarbonelectrode AT kocaksuleyman sensitivedeterminationofhydrazineusingpolyphenolphthaleinaunanoparticlesandmultiwalledcarbonnanotubesmodifiedglassycarbonelectrode AT dursunzekerya sensitivedeterminationofhydrazineusingpolyphenolphthaleinaunanoparticlesandmultiwalledcarbonnanotubesmodifiedglassycarbonelectrode |