Cargando…
A comparison of machine learning classifiers for smartphone-based gait analysis
This paper proposes a reliable monitoring scheme that can assist medical specialists in watching over the patient’s condition. Although several technologies are traditionally used to acquire motion data of patients, the high costs as well as the large spaces they require make them difficult to be ap...
Autores principales: | Altilio, Rosa, Rossetti, Andrea, Fang, Qiang, Gu, Xudong, Panella, Massimo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925506/ https://www.ncbi.nlm.nih.gov/pubmed/33548017 http://dx.doi.org/10.1007/s11517-020-02295-6 |
Ejemplares similares
-
Machine Learning Classifiers to Evaluate Data From Gait Analysis With Depth Cameras in Patients With Parkinson’s Disease
por: Muñoz-Ospina, Beatriz, et al.
Publicado: (2022) -
Detection of Intermittent Claudication from Smartphone Inertial Data in Community Walks Using Machine Learning Classifiers
por: Pinto, Bruno, et al.
Publicado: (2023) -
Classifying Changes in Amputee Gait following Physiotherapy Using Machine Learning and Continuous Inertial Sensor Signals
por: Ng, Gabriel, et al.
Publicado: (2023) -
Application of Machine Vision in Classifying Gait Frailty Among Older Adults
por: Liu, Yixin, et al.
Publicado: (2021) -
Comparison of Different Machine Learning Classifiers for Glaucoma Diagnosis Based on Spectralis OCT
por: Wu, Chao-Wei, et al.
Publicado: (2021)