Cargando…
Nanoprinted high-neuron-density optical linear perceptrons performing near-infrared inference on a CMOS chip
Optical machine learning has emerged as an important research area that, by leveraging the advantages inherent to optical signals, such as parallelism and high speed, paves the way for a future where optical hardware can process data at the speed of light. In this work, we present such optical devic...
Autores principales: | Goi, Elena, Chen, Xi, Zhang, Qiming, Cumming, Benjamin P., Schoenhardt, Steffen, Luan, Haitao, Gu, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925536/ https://www.ncbi.nlm.nih.gov/pubmed/33654061 http://dx.doi.org/10.1038/s41377-021-00483-z |
Ejemplares similares
-
Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks
por: Goi, Elena, et al.
Publicado: (2022) -
Towards nanoprinting with metals on graphene
por: Melinte, G., et al.
Publicado: (2015) -
Neuron‐Inspired Steiner Tree Networks for 3D Low‐Density Metastructures
por: Yu, Haoyi, et al.
Publicado: (2021) -
Nanoprinting organic molecules at the quantum level
por: Hail, Claudio U., et al.
Publicado: (2019) -
Plasmonic nanoprinting: thinner, brighter & swifter
por: Jin, Lei, et al.
Publicado: (2023)