Cargando…
Workflow towards automated segmentation of agglomerated, non-spherical particles from electron microscopy images using artificial neural networks
We present a workflow for obtaining fully trained artificial neural networks that can perform automatic particle segmentations of agglomerated, non-spherical nanoparticles from scanning electron microscopy images “from scratch”, without the need for large training data sets of manually annotated ima...
Autores principales: | Rühle, Bastian, Krumrey, Julian Frederic, Hodoroaba, Vasile-Dan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925552/ https://www.ncbi.nlm.nih.gov/pubmed/33654161 http://dx.doi.org/10.1038/s41598-021-84287-6 |
Ejemplares similares
-
Deep Learning Based Instance Segmentation of Titanium Dioxide Particles in the Form of Agglomerates in Scanning Electron Microscopy
por: Monchot, Paul, et al.
Publicado: (2021) -
Formulation of cilostazol spherical agglomerates by crystallo-co-agglomeration technique and optimization using design of experimentation
por: Deshkar, Sanjeevani Shekhar, et al.
Publicado: (2017) -
Effect of Drying Phase on the Agglomerates Prepared by Spherical Crystallization
por: Maghsoodi, Maryam, et al.
Publicado: (2015) -
A Context-Aware Delayed Agglomeration Framework for Electron Microscopy Segmentation
por: Parag, Toufiq, et al.
Publicado: (2015) -
Counting Small Particles in Electron Microscopy Images—Proposal for Rules and Their Application in Practice
por: Bresch, Harald, et al.
Publicado: (2022)