Cargando…
Imine as a linchpin approach for meta-C–H functionalization
Despite the widespread applications of C–H functionalization, controlling site selectivity remains a significant challenge. Covalently attached directing groups (DGs) served as ancillary ligands to ensure ortho-, meta- and para-C–H functionalization over the last two decades. These covalently linked...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925593/ https://www.ncbi.nlm.nih.gov/pubmed/33654108 http://dx.doi.org/10.1038/s41467-021-21633-2 |
Sumario: | Despite the widespread applications of C–H functionalization, controlling site selectivity remains a significant challenge. Covalently attached directing groups (DGs) served as ancillary ligands to ensure ortho-, meta- and para-C–H functionalization over the last two decades. These covalently linked DGs necessitate two extra steps for a single C–H functionalization: introduction of DG prior to C–H activation and removal of DG post-functionalization. Here we report a temporary directing group (TDG) for meta-C–H functionalization via reversible imine formation. By overruling facile ortho-C–H bond activation by imine-N atom, a suitably designed pyrimidine-based TDG successfully delivered selective meta-C–C bond formation. Application of this temporary directing group strategy for streamlining the synthesis of complex organic molecules without any necessary pre-functionalization at the meta position has been explored. |
---|