Cargando…

Major oscillations in spontaneous home-cage activity in C57BL/6 mice housed under constant conditions

The mouse is the most important mammalian model in life science research and the behavior of the mouse is a key read-out of experimental interventions and genetic manipulations. To serve this purpose a solid understanding of the mouse normal behavior is a prerequisite. Using 14–19 months of cumulati...

Descripción completa

Detalles Bibliográficos
Autores principales: Pernold, Karin, Rullman, Eric, Ulfhake, Brun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925671/
https://www.ncbi.nlm.nih.gov/pubmed/33654141
http://dx.doi.org/10.1038/s41598-021-84141-9
Descripción
Sumario:The mouse is the most important mammalian model in life science research and the behavior of the mouse is a key read-out of experimental interventions and genetic manipulations. To serve this purpose a solid understanding of the mouse normal behavior is a prerequisite. Using 14–19 months of cumulative 24/7 home-cage activity recorded with a non-intrusive technique, evidence is here provided for a highly significant circannual oscillation in spontaneous activity (1–2 SD of the mean, on average 65% higher during peak of highs than lows; P = 7E−50) of male and female C57BL/6 mice held under constant conditions. The periodicity of this hitherto not recognized oscillation is in the range of 2–4 months (average estimate was 97 days across cohorts of cages). It off-sets responses to environmental stimuli and co-varies with the feeding behavior but does not significantly alter the preference for being active during the dark hours. The absence of coordination of this rhythmicity between cages with mice or seasons of the year suggest that the oscillation of physical activity is generated by a free-running intrinsic oscillator devoid of external timer. Due to the magnitude of this rhythmic variation it may be a serious confounder in experiments on mice if left unrecognized.