Cargando…
A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain
Rice grains typically contain high levels of toxic arsenic but low levels of the essential micronutrient selenium. Anthropogenic arsenic contamination of paddy soils exacerbates arsenic toxicity in rice crops resulting in substantial yield losses. Here, we report the identification of the gain-of-fu...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925690/ https://www.ncbi.nlm.nih.gov/pubmed/33654102 http://dx.doi.org/10.1038/s41467-021-21282-5 |
_version_ | 1783659324987408384 |
---|---|
author | Sun, Sheng-Kai Xu, Xuejie Tang, Zhong Tang, Zhu Huang, Xin-Yuan Wirtz, Markus Hell, Rüdiger Zhao, Fang-Jie |
author_facet | Sun, Sheng-Kai Xu, Xuejie Tang, Zhong Tang, Zhu Huang, Xin-Yuan Wirtz, Markus Hell, Rüdiger Zhao, Fang-Jie |
author_sort | Sun, Sheng-Kai |
collection | PubMed |
description | Rice grains typically contain high levels of toxic arsenic but low levels of the essential micronutrient selenium. Anthropogenic arsenic contamination of paddy soils exacerbates arsenic toxicity in rice crops resulting in substantial yield losses. Here, we report the identification of the gain-of-function arsenite tolerant 1 (astol1) mutant of rice that benefits from enhanced sulfur and selenium assimilation, arsenic tolerance, and decreased arsenic accumulation in grains. The astol1 mutation promotes the physical interaction of the chloroplast-localized O-acetylserine (thiol) lyase protein with its interaction partner serine-acetyltransferase in the cysteine synthase complex. Activation of the serine-acetyltransferase in this complex promotes the uptake of sulfate and selenium and enhances the production of cysteine, glutathione, and phytochelatins, resulting in increased tolerance and decreased translocation of arsenic to grains. Our findings uncover the pivotal sensing-function of the cysteine synthase complex in plastids for optimizing stress resilience and grain quality by regulating a fundamental macronutrient assimilation pathway. |
format | Online Article Text |
id | pubmed-7925690 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-79256902021-03-21 A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain Sun, Sheng-Kai Xu, Xuejie Tang, Zhong Tang, Zhu Huang, Xin-Yuan Wirtz, Markus Hell, Rüdiger Zhao, Fang-Jie Nat Commun Article Rice grains typically contain high levels of toxic arsenic but low levels of the essential micronutrient selenium. Anthropogenic arsenic contamination of paddy soils exacerbates arsenic toxicity in rice crops resulting in substantial yield losses. Here, we report the identification of the gain-of-function arsenite tolerant 1 (astol1) mutant of rice that benefits from enhanced sulfur and selenium assimilation, arsenic tolerance, and decreased arsenic accumulation in grains. The astol1 mutation promotes the physical interaction of the chloroplast-localized O-acetylserine (thiol) lyase protein with its interaction partner serine-acetyltransferase in the cysteine synthase complex. Activation of the serine-acetyltransferase in this complex promotes the uptake of sulfate and selenium and enhances the production of cysteine, glutathione, and phytochelatins, resulting in increased tolerance and decreased translocation of arsenic to grains. Our findings uncover the pivotal sensing-function of the cysteine synthase complex in plastids for optimizing stress resilience and grain quality by regulating a fundamental macronutrient assimilation pathway. Nature Publishing Group UK 2021-03-02 /pmc/articles/PMC7925690/ /pubmed/33654102 http://dx.doi.org/10.1038/s41467-021-21282-5 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Sun, Sheng-Kai Xu, Xuejie Tang, Zhong Tang, Zhu Huang, Xin-Yuan Wirtz, Markus Hell, Rüdiger Zhao, Fang-Jie A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain |
title | A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain |
title_full | A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain |
title_fullStr | A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain |
title_full_unstemmed | A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain |
title_short | A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain |
title_sort | molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925690/ https://www.ncbi.nlm.nih.gov/pubmed/33654102 http://dx.doi.org/10.1038/s41467-021-21282-5 |
work_keys_str_mv | AT sunshengkai amolecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain AT xuxuejie amolecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain AT tangzhong amolecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain AT tangzhu amolecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain AT huangxinyuan amolecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain AT wirtzmarkus amolecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain AT hellrudiger amolecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain AT zhaofangjie amolecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain AT sunshengkai molecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain AT xuxuejie molecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain AT tangzhong molecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain AT tangzhu molecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain AT huangxinyuan molecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain AT wirtzmarkus molecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain AT hellrudiger molecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain AT zhaofangjie molecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain |