Cargando…

A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain

Rice grains typically contain high levels of toxic arsenic but low levels of the essential micronutrient selenium. Anthropogenic arsenic contamination of paddy soils exacerbates arsenic toxicity in rice crops resulting in substantial yield losses. Here, we report the identification of the gain-of-fu...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Sheng-Kai, Xu, Xuejie, Tang, Zhong, Tang, Zhu, Huang, Xin-Yuan, Wirtz, Markus, Hell, Rüdiger, Zhao, Fang-Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925690/
https://www.ncbi.nlm.nih.gov/pubmed/33654102
http://dx.doi.org/10.1038/s41467-021-21282-5
_version_ 1783659324987408384
author Sun, Sheng-Kai
Xu, Xuejie
Tang, Zhong
Tang, Zhu
Huang, Xin-Yuan
Wirtz, Markus
Hell, Rüdiger
Zhao, Fang-Jie
author_facet Sun, Sheng-Kai
Xu, Xuejie
Tang, Zhong
Tang, Zhu
Huang, Xin-Yuan
Wirtz, Markus
Hell, Rüdiger
Zhao, Fang-Jie
author_sort Sun, Sheng-Kai
collection PubMed
description Rice grains typically contain high levels of toxic arsenic but low levels of the essential micronutrient selenium. Anthropogenic arsenic contamination of paddy soils exacerbates arsenic toxicity in rice crops resulting in substantial yield losses. Here, we report the identification of the gain-of-function arsenite tolerant 1 (astol1) mutant of rice that benefits from enhanced sulfur and selenium assimilation, arsenic tolerance, and decreased arsenic accumulation in grains. The astol1 mutation promotes the physical interaction of the chloroplast-localized O-acetylserine (thiol) lyase protein with its interaction partner serine-acetyltransferase in the cysteine synthase complex. Activation of the serine-acetyltransferase in this complex promotes the uptake of sulfate and selenium and enhances the production of cysteine, glutathione, and phytochelatins, resulting in increased tolerance and decreased translocation of arsenic to grains. Our findings uncover the pivotal sensing-function of the cysteine synthase complex in plastids for optimizing stress resilience and grain quality by regulating a fundamental macronutrient assimilation pathway.
format Online
Article
Text
id pubmed-7925690
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-79256902021-03-21 A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain Sun, Sheng-Kai Xu, Xuejie Tang, Zhong Tang, Zhu Huang, Xin-Yuan Wirtz, Markus Hell, Rüdiger Zhao, Fang-Jie Nat Commun Article Rice grains typically contain high levels of toxic arsenic but low levels of the essential micronutrient selenium. Anthropogenic arsenic contamination of paddy soils exacerbates arsenic toxicity in rice crops resulting in substantial yield losses. Here, we report the identification of the gain-of-function arsenite tolerant 1 (astol1) mutant of rice that benefits from enhanced sulfur and selenium assimilation, arsenic tolerance, and decreased arsenic accumulation in grains. The astol1 mutation promotes the physical interaction of the chloroplast-localized O-acetylserine (thiol) lyase protein with its interaction partner serine-acetyltransferase in the cysteine synthase complex. Activation of the serine-acetyltransferase in this complex promotes the uptake of sulfate and selenium and enhances the production of cysteine, glutathione, and phytochelatins, resulting in increased tolerance and decreased translocation of arsenic to grains. Our findings uncover the pivotal sensing-function of the cysteine synthase complex in plastids for optimizing stress resilience and grain quality by regulating a fundamental macronutrient assimilation pathway. Nature Publishing Group UK 2021-03-02 /pmc/articles/PMC7925690/ /pubmed/33654102 http://dx.doi.org/10.1038/s41467-021-21282-5 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Sun, Sheng-Kai
Xu, Xuejie
Tang, Zhong
Tang, Zhu
Huang, Xin-Yuan
Wirtz, Markus
Hell, Rüdiger
Zhao, Fang-Jie
A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain
title A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain
title_full A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain
title_fullStr A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain
title_full_unstemmed A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain
title_short A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain
title_sort molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925690/
https://www.ncbi.nlm.nih.gov/pubmed/33654102
http://dx.doi.org/10.1038/s41467-021-21282-5
work_keys_str_mv AT sunshengkai amolecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain
AT xuxuejie amolecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain
AT tangzhong amolecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain
AT tangzhu amolecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain
AT huangxinyuan amolecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain
AT wirtzmarkus amolecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain
AT hellrudiger amolecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain
AT zhaofangjie amolecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain
AT sunshengkai molecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain
AT xuxuejie molecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain
AT tangzhong molecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain
AT tangzhu molecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain
AT huangxinyuan molecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain
AT wirtzmarkus molecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain
AT hellrudiger molecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain
AT zhaofangjie molecularswitchinsulfurmetabolismtoreducearsenicandenrichseleniuminricegrain