Cargando…
Use of Radiomics to Improve Diagnostic Performance of PI-RADS v2.1 in Prostate Cancer
OBJECTIVE: To investigate whether a radiomics model can help to improve the performance of PI-RADS v2.1 in prostate cancer (PCa). METHODS: This was a retrospective analysis of 203 patients with pathologically confirmed PCa or non-PCa between March 2015 and December 2016. Patients were divided into a...
Autores principales: | Li, Mou, Yang, Ling, Yue, Yufeng, Xu, Jingxu, Huang, Chencui, Song, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925826/ https://www.ncbi.nlm.nih.gov/pubmed/33680954 http://dx.doi.org/10.3389/fonc.2020.631831 |
Ejemplares similares
-
Radiomic Machine Learning and External Validation Based on 3.0 T mpMRI for Prediction of Intraductal Carcinoma of Prostate With Different Proportion
por: Yang, Ling, et al.
Publicado: (2022) -
MRI Based Radiomics Compared With the PI-RADS V2.1 in the Prediction of Clinically Significant Prostate Cancer: Biparametric vs Multiparametric MRI
por: Chen, Tong, et al.
Publicado: (2022) -
Utility of Clinical–Radiomic Model to Identify Clinically Significant Prostate Cancer in Biparametric MRI PI-RADS V2.1 Category 3 Lesions
por: Jin, Pengfei, et al.
Publicado: (2022) -
PI-RADS v2.1 Combined With Prostate-Specific Antigen Density for Detection of Prostate Cancer in Peripheral Zone
por: Wen, Jing, et al.
Publicado: (2022) -
Development and Validation of a Radiomics Nomogram for Predicting Clinically Significant Prostate Cancer in PI-RADS 3 Lesions
por: Li, Tianping, et al.
Publicado: (2022)