Cargando…
A Hybrid-Attention Nested UNet for Nuclear Segmentation in Histopathological Images
Nuclear segmentation of histopathological images is a crucial step in computer-aided image analysis. There are complex, diverse, dense, and even overlapping nuclei in these histopathological images, leading to a challenging task of nuclear segmentation. To overcome this challenge, this paper propose...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925890/ https://www.ncbi.nlm.nih.gov/pubmed/33681291 http://dx.doi.org/10.3389/fmolb.2021.614174 |
_version_ | 1783659350081929216 |
---|---|
author | He, Hongliang Zhang, Chi Chen, Jie Geng, Ruizhe Chen, Luyang Liang, Yongsheng Lu, Yanchang Wu, Jihua Xu, Yongjie |
author_facet | He, Hongliang Zhang, Chi Chen, Jie Geng, Ruizhe Chen, Luyang Liang, Yongsheng Lu, Yanchang Wu, Jihua Xu, Yongjie |
author_sort | He, Hongliang |
collection | PubMed |
description | Nuclear segmentation of histopathological images is a crucial step in computer-aided image analysis. There are complex, diverse, dense, and even overlapping nuclei in these histopathological images, leading to a challenging task of nuclear segmentation. To overcome this challenge, this paper proposes a hybrid-attention nested UNet (Han-Net), which consists of two modules: a hybrid nested U-shaped network (H-part) and a hybrid attention block (A-part). H-part combines a nested multi-depth U-shaped network and a dense network with full resolution to capture more effective features. A-part is used to explore attention information and build correlations between different pixels. With these two modules, Han-Net extracts discriminative features, which effectively segment the boundaries of not only complex and diverse nuclei but also small and dense nuclei. The comparison in a publicly available multi-organ dataset shows that the proposed model achieves the state-of-the-art performance compared to other models. |
format | Online Article Text |
id | pubmed-7925890 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79258902021-03-04 A Hybrid-Attention Nested UNet for Nuclear Segmentation in Histopathological Images He, Hongliang Zhang, Chi Chen, Jie Geng, Ruizhe Chen, Luyang Liang, Yongsheng Lu, Yanchang Wu, Jihua Xu, Yongjie Front Mol Biosci Molecular Biosciences Nuclear segmentation of histopathological images is a crucial step in computer-aided image analysis. There are complex, diverse, dense, and even overlapping nuclei in these histopathological images, leading to a challenging task of nuclear segmentation. To overcome this challenge, this paper proposes a hybrid-attention nested UNet (Han-Net), which consists of two modules: a hybrid nested U-shaped network (H-part) and a hybrid attention block (A-part). H-part combines a nested multi-depth U-shaped network and a dense network with full resolution to capture more effective features. A-part is used to explore attention information and build correlations between different pixels. With these two modules, Han-Net extracts discriminative features, which effectively segment the boundaries of not only complex and diverse nuclei but also small and dense nuclei. The comparison in a publicly available multi-organ dataset shows that the proposed model achieves the state-of-the-art performance compared to other models. Frontiers Media S.A. 2021-02-17 /pmc/articles/PMC7925890/ /pubmed/33681291 http://dx.doi.org/10.3389/fmolb.2021.614174 Text en Copyright © 2021 He, Zhang, Chen, Geng, Chen, Liang, Lu, Wu and Xu. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Molecular Biosciences He, Hongliang Zhang, Chi Chen, Jie Geng, Ruizhe Chen, Luyang Liang, Yongsheng Lu, Yanchang Wu, Jihua Xu, Yongjie A Hybrid-Attention Nested UNet for Nuclear Segmentation in Histopathological Images |
title | A Hybrid-Attention Nested UNet for Nuclear Segmentation in Histopathological Images |
title_full | A Hybrid-Attention Nested UNet for Nuclear Segmentation in Histopathological Images |
title_fullStr | A Hybrid-Attention Nested UNet for Nuclear Segmentation in Histopathological Images |
title_full_unstemmed | A Hybrid-Attention Nested UNet for Nuclear Segmentation in Histopathological Images |
title_short | A Hybrid-Attention Nested UNet for Nuclear Segmentation in Histopathological Images |
title_sort | hybrid-attention nested unet for nuclear segmentation in histopathological images |
topic | Molecular Biosciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925890/ https://www.ncbi.nlm.nih.gov/pubmed/33681291 http://dx.doi.org/10.3389/fmolb.2021.614174 |
work_keys_str_mv | AT hehongliang ahybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages AT zhangchi ahybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages AT chenjie ahybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages AT gengruizhe ahybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages AT chenluyang ahybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages AT liangyongsheng ahybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages AT luyanchang ahybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages AT wujihua ahybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages AT xuyongjie ahybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages AT hehongliang hybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages AT zhangchi hybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages AT chenjie hybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages AT gengruizhe hybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages AT chenluyang hybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages AT liangyongsheng hybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages AT luyanchang hybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages AT wujihua hybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages AT xuyongjie hybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages |