Cargando…

A Hybrid-Attention Nested UNet for Nuclear Segmentation in Histopathological Images

Nuclear segmentation of histopathological images is a crucial step in computer-aided image analysis. There are complex, diverse, dense, and even overlapping nuclei in these histopathological images, leading to a challenging task of nuclear segmentation. To overcome this challenge, this paper propose...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Hongliang, Zhang, Chi, Chen, Jie, Geng, Ruizhe, Chen, Luyang, Liang, Yongsheng, Lu, Yanchang, Wu, Jihua, Xu, Yongjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925890/
https://www.ncbi.nlm.nih.gov/pubmed/33681291
http://dx.doi.org/10.3389/fmolb.2021.614174
_version_ 1783659350081929216
author He, Hongliang
Zhang, Chi
Chen, Jie
Geng, Ruizhe
Chen, Luyang
Liang, Yongsheng
Lu, Yanchang
Wu, Jihua
Xu, Yongjie
author_facet He, Hongliang
Zhang, Chi
Chen, Jie
Geng, Ruizhe
Chen, Luyang
Liang, Yongsheng
Lu, Yanchang
Wu, Jihua
Xu, Yongjie
author_sort He, Hongliang
collection PubMed
description Nuclear segmentation of histopathological images is a crucial step in computer-aided image analysis. There are complex, diverse, dense, and even overlapping nuclei in these histopathological images, leading to a challenging task of nuclear segmentation. To overcome this challenge, this paper proposes a hybrid-attention nested UNet (Han-Net), which consists of two modules: a hybrid nested U-shaped network (H-part) and a hybrid attention block (A-part). H-part combines a nested multi-depth U-shaped network and a dense network with full resolution to capture more effective features. A-part is used to explore attention information and build correlations between different pixels. With these two modules, Han-Net extracts discriminative features, which effectively segment the boundaries of not only complex and diverse nuclei but also small and dense nuclei. The comparison in a publicly available multi-organ dataset shows that the proposed model achieves the state-of-the-art performance compared to other models.
format Online
Article
Text
id pubmed-7925890
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-79258902021-03-04 A Hybrid-Attention Nested UNet for Nuclear Segmentation in Histopathological Images He, Hongliang Zhang, Chi Chen, Jie Geng, Ruizhe Chen, Luyang Liang, Yongsheng Lu, Yanchang Wu, Jihua Xu, Yongjie Front Mol Biosci Molecular Biosciences Nuclear segmentation of histopathological images is a crucial step in computer-aided image analysis. There are complex, diverse, dense, and even overlapping nuclei in these histopathological images, leading to a challenging task of nuclear segmentation. To overcome this challenge, this paper proposes a hybrid-attention nested UNet (Han-Net), which consists of two modules: a hybrid nested U-shaped network (H-part) and a hybrid attention block (A-part). H-part combines a nested multi-depth U-shaped network and a dense network with full resolution to capture more effective features. A-part is used to explore attention information and build correlations between different pixels. With these two modules, Han-Net extracts discriminative features, which effectively segment the boundaries of not only complex and diverse nuclei but also small and dense nuclei. The comparison in a publicly available multi-organ dataset shows that the proposed model achieves the state-of-the-art performance compared to other models. Frontiers Media S.A. 2021-02-17 /pmc/articles/PMC7925890/ /pubmed/33681291 http://dx.doi.org/10.3389/fmolb.2021.614174 Text en Copyright © 2021 He, Zhang, Chen, Geng, Chen, Liang, Lu, Wu and Xu. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Molecular Biosciences
He, Hongliang
Zhang, Chi
Chen, Jie
Geng, Ruizhe
Chen, Luyang
Liang, Yongsheng
Lu, Yanchang
Wu, Jihua
Xu, Yongjie
A Hybrid-Attention Nested UNet for Nuclear Segmentation in Histopathological Images
title A Hybrid-Attention Nested UNet for Nuclear Segmentation in Histopathological Images
title_full A Hybrid-Attention Nested UNet for Nuclear Segmentation in Histopathological Images
title_fullStr A Hybrid-Attention Nested UNet for Nuclear Segmentation in Histopathological Images
title_full_unstemmed A Hybrid-Attention Nested UNet for Nuclear Segmentation in Histopathological Images
title_short A Hybrid-Attention Nested UNet for Nuclear Segmentation in Histopathological Images
title_sort hybrid-attention nested unet for nuclear segmentation in histopathological images
topic Molecular Biosciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925890/
https://www.ncbi.nlm.nih.gov/pubmed/33681291
http://dx.doi.org/10.3389/fmolb.2021.614174
work_keys_str_mv AT hehongliang ahybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages
AT zhangchi ahybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages
AT chenjie ahybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages
AT gengruizhe ahybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages
AT chenluyang ahybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages
AT liangyongsheng ahybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages
AT luyanchang ahybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages
AT wujihua ahybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages
AT xuyongjie ahybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages
AT hehongliang hybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages
AT zhangchi hybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages
AT chenjie hybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages
AT gengruizhe hybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages
AT chenluyang hybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages
AT liangyongsheng hybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages
AT luyanchang hybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages
AT wujihua hybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages
AT xuyongjie hybridattentionnestedunetfornuclearsegmentationinhistopathologicalimages