Cargando…
A Hybrid-Attention Nested UNet for Nuclear Segmentation in Histopathological Images
Nuclear segmentation of histopathological images is a crucial step in computer-aided image analysis. There are complex, diverse, dense, and even overlapping nuclei in these histopathological images, leading to a challenging task of nuclear segmentation. To overcome this challenge, this paper propose...
Autores principales: | He, Hongliang, Zhang, Chi, Chen, Jie, Geng, Ruizhe, Chen, Luyang, Liang, Yongsheng, Lu, Yanchang, Wu, Jihua, Xu, Yongjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925890/ https://www.ncbi.nlm.nih.gov/pubmed/33681291 http://dx.doi.org/10.3389/fmolb.2021.614174 |
Ejemplares similares
-
Multi-Task Classification and Segmentation for Explicable Capsule Endoscopy Diagnostics
por: Kong, Zishang, et al.
Publicado: (2021) -
One-Shot Learning With Attention-Guided Segmentation in Cryo-Electron Tomography
por: Zhou, Bo, et al.
Publicado: (2021) -
Improved UNet with Attention for Medical Image Segmentation
por: AL Qurri, Ahmed, et al.
Publicado: (2023) -
SAA-UNet: Spatial Attention and Attention Gate UNet for COVID-19 Pneumonia Segmentation from Computed Tomography
por: Alshomrani, Shroog, et al.
Publicado: (2023) -
New hybrid segmentation algorithm: UNet-GOA
por: Yousefi, Tohid, et al.
Publicado: (2023)