Cargando…
Challenge of forecasting demand of medical resources and supplies during a pandemic: A comparative evaluation of three surge calculators for COVID-19
Ever since the World Health Organization (WHO) declared the new coronavirus disease 2019 (COVID-19) as a pandemic, there has been a public health debate concerning medical resources and supplies including hospital beds, intensive care units (ICU), ventilators and protective personal equipment (PPE)....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925989/ https://www.ncbi.nlm.nih.gov/pubmed/33531094 http://dx.doi.org/10.1017/S095026882100025X |
Sumario: | Ever since the World Health Organization (WHO) declared the new coronavirus disease 2019 (COVID-19) as a pandemic, there has been a public health debate concerning medical resources and supplies including hospital beds, intensive care units (ICU), ventilators and protective personal equipment (PPE). Forecasting COVID-19 dissemination has played a key role in informing healthcare professionals and governments on how to manage overburdened healthcare systems. However, forecasting during the pandemic remained challenging and sometimes highly controversial. Here, we highlight this challenge by performing a comparative evaluation for the estimations obtained from three COVID-19 surge calculators under different social distancing approaches, taking Lebanon as a case study. Despite discrepancies in estimations, the three surge calculators used herein agree that there will be a relative shortage in the capacity of medical resources and a significant surge in PPE demand if the social distancing policy is removed. Our results underscore the importance of implementing containment interventions including social distancing in alleviating the demand for medical care during the COVID-19 pandemic in the absence of any medication or vaccine. The paper also highlights the value of employing several models in surge planning. |
---|