Cargando…
Conditional particle filters with diffuse initial distributions
Conditional particle filters (CPFs) are powerful smoothing algorithms for general nonlinear/non-Gaussian hidden Markov models. However, CPFs can be inefficient or difficult to apply with diffuse initial distributions, which are common in statistical applications. We propose a simple but generally ap...
Autores principales: | Karppinen, Santeri, Vihola, Matti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926083/ https://www.ncbi.nlm.nih.gov/pubmed/33679010 http://dx.doi.org/10.1007/s11222-020-09975-1 |
Ejemplares similares
-
Prediction of leukocyte counts during paediatric acute lymphoblastic leukaemia maintenance therapy
por: Karppinen, Santeri, et al.
Publicado: (2019) -
Distributed Kalman Filtering Based on the Non-Repeated Diffusion Strategy
por: Zhang, Xiaoyu, et al.
Publicado: (2020) -
Sequential Bearings-Only-Tracking Initiation with Particle Filtering Method
por: Liu, Bin, et al.
Publicado: (2013) -
Distributed Particle Filter for Target Tracking: With Reduced Sensor Communications
por: Ghirmai, Tadesse
Publicado: (2016) -
Distributed SLAM Using Improved Particle Filter for Mobile Robot Localization
por: Pei, Fujun, et al.
Publicado: (2014)