Cargando…
Influence of Supplementing Sesbania grandiflora Pod Meal at Two Dietary Crude Protein Levels on Feed Intake, Fermentation Characteristics, and Methane Mitigation in Thai Purebred Beef Cattle
The aim of the study was to evaluate the effect of crude protein (CP) levels in concentrate and Sesbania grandiflora pod meal (SG) supplementation on feed intake, rumen fermentation, and methane (CH(4)) mitigation in Thai purebred beef cattle. Four cattle with 100 ± 5.0 kg body weight were used in t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926297/ https://www.ncbi.nlm.nih.gov/pubmed/33672399 http://dx.doi.org/10.3390/vetsci8020035 |
Sumario: | The aim of the study was to evaluate the effect of crude protein (CP) levels in concentrate and Sesbania grandiflora pod meal (SG) supplementation on feed intake, rumen fermentation, and methane (CH(4)) mitigation in Thai purebred beef cattle. Four cattle with 100 ± 5.0 kg body weight were used in this study. A 2 × 2 factorial experiment in a 4 × 4 Latin square design was conducted, in which factor A was the CP levels in concentrate of 14% and 16% of dry matter (DM) and factor B was the supplement levels of SG at 0.4% and 0.6% DM intake, respectively. The results showed that the CP content in concentrate and SG supplementation had no interaction effect on intake, digestibility, ruminal ecologies, ruminal fermentation products, and nitrogen utilization. Increasing CP content to 16% significantly (p < 0.05) increased the ruminal ammonia nitrogen (NH(3)-N), nitrogen (N) intake, N absorption, and N retention. SG supplementation significantly (p < 0.05) decreased CP digestibility, NH(3)-N, blood urea nitrogen, and protozoa. In addition, SG significantly decreased acetate (C2), acetate to propionate ratio, methane, and fecal N excretion, while it significantly increased total volatile fatty acids (VFAs) and propionate (C3) concentration. In conclusion, SG could mitigate methane emission and enhance nitrogen utilization. |
---|