Cargando…
The Effects Induced by Microwave Field upon Tungsten Wires of Different Diameters
The effects induced by microwave field upon tungsten wires of different diameters were investigated. Tungsten wires with 0.5 and 1.0 mm diameters were placed in the focal point of a single-mode cylindrical cavity linked to a microwave generator and exposed to microwave field in ambient air. The expe...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926306/ https://www.ncbi.nlm.nih.gov/pubmed/33671682 http://dx.doi.org/10.3390/ma14041036 |
Sumario: | The effects induced by microwave field upon tungsten wires of different diameters were investigated. Tungsten wires with 0.5 and 1.0 mm diameters were placed in the focal point of a single-mode cylindrical cavity linked to a microwave generator and exposed to microwave field in ambient air. The experimental results showed that the 0.5 mm diameter wire was completely vaporized due to microwaves strong absorption, while the wire with 1 mm diameter was not ignited. During the interaction between microwaves and tungsten wire with 0.5 mm diameter, a plasma with a high electronic excitation temperature was obtained. The theoretical analysis of the experiment showed that the voltage generated by metallic wires in interaction with microwaves depended on their electric resistance in AC and the power of the microwave field. The physical parameters and dimension of the metallic wire play a crucial role in the ignition process of the plasma by the microwave field. This new and simple method to generate a high-temperature plasma from a metallic wire could have many applications, especially in metal oxides synthesis, metal coatings, or thin film deposition. |
---|