Cargando…

Lignin-Stabilized Doxorubicin Microemulsions: Synthesis, Physical Characterization, and In Vitro Assessments

Encapsulation of the chemotherapy agents within colloidal systems usually improves drug efficiency and decreases its toxicity. In this study, lignin (LGN) (the second most abundant biopolymer next to cellulose on earth) was employed to prepare novel doxorubicin (DOX)-loaded oil-in-water (O/W) microe...

Descripción completa

Detalles Bibliográficos
Autores principales: Rahdar, Abbas, Sargazi, Saman, Barani, Mahmood, Shahraki, Sheida, Sabir, Fakhara, Aboudzadeh, M. Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926373/
https://www.ncbi.nlm.nih.gov/pubmed/33670009
http://dx.doi.org/10.3390/polym13040641
Descripción
Sumario:Encapsulation of the chemotherapy agents within colloidal systems usually improves drug efficiency and decreases its toxicity. In this study, lignin (LGN) (the second most abundant biopolymer next to cellulose on earth) was employed to prepare novel doxorubicin (DOX)-loaded oil-in-water (O/W) microemulsions with the aim of enhancing the bioavailability of DOX. The droplet size of DOX-loaded microemulsion was obtained as ≈ 7.5 nm by dynamic light scattering (DLS) analysis. The entrapment efficiency (EE) % of LGN/DOX microemulsions was calculated to be about 82%. In addition, a slow and sustainable release rate of DOX (68%) was observed after 24 h for these microemulsions. The cytotoxic effects of standard DOX and LGN/DOX microemulsions on non-malignant (HUVEC) and malignant (MCF7 and C152) cell lines were assessed by application of a tetrazolium (MTT) colorimetric assay. Disruption of cell membrane integrity was investigated by measuring intracellular lactate dehydrogenase (LDH) leakage. In vitro experiments showed that LGN/DOX microemulsions induced noticeable morphological alterations and a greater cell-killing effect than standard DOX. Moreover, LGN/DOX microemulsions significantly disrupted the membrane integrity of C152 cells. These results demonstrate that encapsulation and slow release of DOX improved the cytotoxic efficacy of this anthracycline agent against cancer cells but did not improve its safety towards normal human cells. Overall, this study provides a scientific basis for future studies on the encapsulation efficiency of microemulsions as a promising drug carrier for overcoming pharmacokinetic limitations.