Cargando…

Behavioral Responses of the Common Bed Bug to Essential Oil Constituents

SIMPLE SUMMARY: Bed bugs (Cimex lectularius L.) are blood-sucking insects that have emerged worldwide in the last two decades causing serious public health and economic impact. Today, control of bed bug infestations relies on the use of synthetic insecticides, but their frequent use has led to the d...

Descripción completa

Detalles Bibliográficos
Autores principales: González-Morales, María A., Terán, Martín, Romero, Alvaro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926421/
https://www.ncbi.nlm.nih.gov/pubmed/33670065
http://dx.doi.org/10.3390/insects12020184
Descripción
Sumario:SIMPLE SUMMARY: Bed bugs (Cimex lectularius L.) are blood-sucking insects that have emerged worldwide in the last two decades causing serious public health and economic impact. Today, control of bed bug infestations relies on the use of synthetic insecticides, but their frequent use has led to the development of resistance in bed bug populations. Therefore, there is a growing demand for the development of safer, green, and more effective tools for bed bug control. Plant-derived pesticides are part of the proposed “green” methods for bed bug control. We evaluated behavioral responses of bed bugs to essential oil constituents (EOCs) and detected that bed bugs did not rest on areas treated with geraniol, eugenol, citronellic acid, and carvacrol. Barriers of these constituents did not deter bed bugs from reaching warmed blood meal and feeding. Our results show that novel formulations of natural product insecticides that include geraniol, eugenol, carvacrol, or citronellic acid have potential to repel bed bugs. However, little benefit of protection against bed bug bites can be expected when EOC-based products are applied to items present in close proximity to a sleeping host such as mattress covers, liners, or around the bed. ABSTRACT: Botanical-derived pesticides have arisen as an attractive alternative to synthetic insecticides to effectively manage infestations of bed bugs (Cimex lectularius L.). While information on contact, residual, and fumigant toxicity of plant-essential oils against bed bugs have been recently published, there is a gap of information regarding the repellent activity of these products and their constituents. Identification of essential oil constituents (EOCs) with repellent activity will help develop potentially efficacious essential oil-based formulations for use in bed bug management programs. In this study, we first screened fresh and 24 h-aged residues of geraniol, eugenol, carvacrol, thymol, citronellic acid, linalool, menthone, trans-cinnamaldehyde, α-pinene, β-pinene, and limonene for avoidance behavior from individual bed bugs with a video-tracking system. Six EOCs, geraniol, eugenol, citronellic acid, thymol, carvacrol, and linalool were further evaluated overnight in choice tests to determine whether 24-h aged residues were still avoided by groups of bed bugs. While bed bugs avoided resting on filter papers treated with 24-h aged residues of geraniol, eugenol, citronellic acid, and carvacrol, bed bugs aggregated in areas treated with linalool-aged residues. Barriers of EOCs did not prevent bed bugs from reaching a warmed blood source and acquiring blood meals. Our results show that novel formulations of natural product insecticides that include geraniol, eugenol, carvacrol, or citronellic acid have potential to repel bed bugs. The presence of host-associated cues might interfere with these responses.