Cargando…

Bio-Inspired and Smart Nanoparticles for Triple Negative Breast Cancer Microenvironment

Triple negative breast cancer (TNBC) with poor prognosis and aggressive nature accounts for 10–20% of all invasive breast cancer (BC) cases and is detected in as much as 15% of individuals diagnosed with BC. Currently, due to the absence of the estrogen receptor (ER), progesterone receptor (PR), and...

Descripción completa

Detalles Bibliográficos
Autores principales: Keihan Shokooh, Mahsa, Emami, Fakhrossadat, Jeong, Jee-Heon, Yook, Simmyung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926463/
https://www.ncbi.nlm.nih.gov/pubmed/33671698
http://dx.doi.org/10.3390/pharmaceutics13020287
Descripción
Sumario:Triple negative breast cancer (TNBC) with poor prognosis and aggressive nature accounts for 10–20% of all invasive breast cancer (BC) cases and is detected in as much as 15% of individuals diagnosed with BC. Currently, due to the absence of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) receptor, there is no hormone-based therapy for TNBC. In addition, there are still no FDA-approved targeted therapies for patients with TNBC. TNBC treatment is challenging owing to poor prognosis, tumor heterogeneity, chemotherapeutic side effects, the chance of metastasis, and multiple drug-resistance. Therefore, various bio-inspired tumor-homing nano systems responding to intra- and extra- cellular stimuli are an urgent need to treat TNBC patients who do not respond to current chemotherapy. In this review, intensive efforts have been made for exploring cell-membrane coated nanoparticles and immune cell-targeted nanoparticles (immunotherapy) to modulate the tumor microenvironment and deliver accurate amounts of therapeutic agents to TNBC without stimulating the immune system.