Cargando…

Buckling Resistance of Two-Segment Stepped Steel Columns

Columns of stepwise variable bending stiffness are encountered in the engineering practice quite often. Two different load cases can be distinguished: firstly, the axial force acting only at the end of the column; secondly, besides the force acting at the end, the additional force acting at the plac...

Descripción completa

Detalles Bibliográficos
Autores principales: Fliegner, Bartłomiej, Marcinowski, Jakub, Sakharov, Volodymyr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926504/
https://www.ncbi.nlm.nih.gov/pubmed/33672203
http://dx.doi.org/10.3390/ma14041046
_version_ 1783659481641517056
author Fliegner, Bartłomiej
Marcinowski, Jakub
Sakharov, Volodymyr
author_facet Fliegner, Bartłomiej
Marcinowski, Jakub
Sakharov, Volodymyr
author_sort Fliegner, Bartłomiej
collection PubMed
description Columns of stepwise variable bending stiffness are encountered in the engineering practice quite often. Two different load cases can be distinguished: firstly, the axial force acting only at the end of the column; secondly, besides the force acting at the end, the additional force acting at the place where the section changes suddenly. Expressions for critical forces for these two cases of loading are required to correctly design such columns. Analytical formulae defining critical forces for pin-ended columns are derived and presented in the paper. Derivations were based on the Euler-Bernoulli theory of beams. The energetic criterion of Timoshenko was adopted as the buckling criterion. Both formulae were derived in the form of Rayleigh quotients using the Mathematica(®) system. The correctness of formulae was verified based on one the of transcendental equations derived from differential equations of stability and presented by Volmir. Comparisons to results obtained by other authors were presented, as well. The derived formulae on the critical forces can be directly used by designers in procedures leading to the column’s buckling resistance assessment. The relatively simple procedure leading to buckling resistance assessment of steel stepped columns and based on general Ayrton-Perry approach was proposed in this work. The series of experimental tests made on steel, stepped columns and numerical simulations have confirmed the correctness of the presented approach.
format Online
Article
Text
id pubmed-7926504
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79265042021-03-04 Buckling Resistance of Two-Segment Stepped Steel Columns Fliegner, Bartłomiej Marcinowski, Jakub Sakharov, Volodymyr Materials (Basel) Article Columns of stepwise variable bending stiffness are encountered in the engineering practice quite often. Two different load cases can be distinguished: firstly, the axial force acting only at the end of the column; secondly, besides the force acting at the end, the additional force acting at the place where the section changes suddenly. Expressions for critical forces for these two cases of loading are required to correctly design such columns. Analytical formulae defining critical forces for pin-ended columns are derived and presented in the paper. Derivations were based on the Euler-Bernoulli theory of beams. The energetic criterion of Timoshenko was adopted as the buckling criterion. Both formulae were derived in the form of Rayleigh quotients using the Mathematica(®) system. The correctness of formulae was verified based on one the of transcendental equations derived from differential equations of stability and presented by Volmir. Comparisons to results obtained by other authors were presented, as well. The derived formulae on the critical forces can be directly used by designers in procedures leading to the column’s buckling resistance assessment. The relatively simple procedure leading to buckling resistance assessment of steel stepped columns and based on general Ayrton-Perry approach was proposed in this work. The series of experimental tests made on steel, stepped columns and numerical simulations have confirmed the correctness of the presented approach. MDPI 2021-02-23 /pmc/articles/PMC7926504/ /pubmed/33672203 http://dx.doi.org/10.3390/ma14041046 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Fliegner, Bartłomiej
Marcinowski, Jakub
Sakharov, Volodymyr
Buckling Resistance of Two-Segment Stepped Steel Columns
title Buckling Resistance of Two-Segment Stepped Steel Columns
title_full Buckling Resistance of Two-Segment Stepped Steel Columns
title_fullStr Buckling Resistance of Two-Segment Stepped Steel Columns
title_full_unstemmed Buckling Resistance of Two-Segment Stepped Steel Columns
title_short Buckling Resistance of Two-Segment Stepped Steel Columns
title_sort buckling resistance of two-segment stepped steel columns
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926504/
https://www.ncbi.nlm.nih.gov/pubmed/33672203
http://dx.doi.org/10.3390/ma14041046
work_keys_str_mv AT fliegnerbartłomiej bucklingresistanceoftwosegmentsteppedsteelcolumns
AT marcinowskijakub bucklingresistanceoftwosegmentsteppedsteelcolumns
AT sakharovvolodymyr bucklingresistanceoftwosegmentsteppedsteelcolumns