Cargando…
An Ensemble Learning Solution for Predictive Maintenance of Wind Turbines Main Bearing
A novel and innovative solution addressing wind turbines’ main bearing failure predictions using SCADA data is presented. This methodology enables to cut setup times and has more flexible requirements when compared to the current predictive algorithms. The proposed solution is entirely unsupervised...
Autores principales: | Beretta, Mattia, Julian, Anatole, Sepulveda, Jose, Cusidó, Jordi, Porro, Olga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926535/ https://www.ncbi.nlm.nih.gov/pubmed/33671601 http://dx.doi.org/10.3390/s21041512 |
Ejemplares similares
-
Wind Turbine Main Bearing Fault Prognosis Based Solely on SCADA Data
por: Encalada-Dávila, Ángel, et al.
Publicado: (2021) -
Machine Learning for Long Cycle Maintenance Prediction of Wind Turbine
por: Yeh, Chia-Hung, et al.
Publicado: (2019) -
Prognosis of a Wind Turbine Gearbox Bearing Using Supervised Machine Learning
por: Elasha, Faris, et al.
Publicado: (2019) -
Framework for Bidirectional Knowledge-Based Maintenance of Wind Turbines
por: Vives, Javier, et al.
Publicado: (2022) -
Research on Extraction of Compound Fault Characteristics for Rolling Bearings in Wind Turbines
por: Xiang, Ling, et al.
Publicado: (2020)