Cargando…
ARTYCUL: A Privacy-Preserving ML-Driven Framework to Determine the Popularity of a Cultural Exhibit on Display
We present ARTYCUL (ARTifact popularitY for CULtural heritage), a machine learning(ML)-based framework that graphically represents the footfall around an artifact on display at a museum or a heritage site. The driving factor of this framework was the fact that the presence of security cameras has be...
Autores principales: | Tanwar, Gatha, Chauhan, Ritu, Yafi, Eiad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926548/ https://www.ncbi.nlm.nih.gov/pubmed/33671822 http://dx.doi.org/10.3390/s21041527 |
Ejemplares similares
-
The impact of geo-political socio-economic factors on vaccine dissemination trends: a case-study on COVID-19 vaccination strategies
por: Chauhan, Ritu, et al.
Publicado: (2023) -
Sarve: synthetic data and local differential privacy for private frequency estimation
por: Varma, Gatha, et al.
Publicado: (2022) -
Pre-Emption of Affliction Severity Using HRV Measurements from a Smart Wearable; Case-Study on SARS-Cov-2 Symptoms
por: Tanwar, Gatha, et al.
Publicado: (2020) -
Robustness of privacy-preserving collaborative recommenders against popularity bias problem
por: Gulsoy, Mert, et al.
Publicado: (2023) -
Privacy-Preserving Sports Wearable Data Fusion Framework
por: Li, Jia, et al.
Publicado: (2022)