Cargando…
Sensor Modeling for Underwater Localization Using a Particle Filter
This paper presents a framework for processing, modeling, and fusing underwater sensor signals to provide a reliable perception for underwater localization in structured environments. Submerged sensory information is often affected by diverse sources of uncertainty that can deteriorate the positioni...
Autores principales: | Martínez-Barberá, Humberto, Bernal-Polo, Pablo, Herrero-Pérez, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926564/ https://www.ncbi.nlm.nih.gov/pubmed/33672255 http://dx.doi.org/10.3390/s21041549 |
Ejemplares similares
-
Kalman Filtering for Attitude Estimation with Quaternions and Concepts from Manifold Theory
por: Bernal-Polo, Pablo, et al.
Publicado: (2019) -
Color Filtering Localization for Three-Dimensional Underwater Acoustic Sensor Networks
por: Liu, Zhihua, et al.
Publicado: (2015) -
STVF: Spatial-Temporal Variational Filtering for Localization in Underwater Acoustic Sensor Networks
por: Hu, Keyong, et al.
Publicado: (2018) -
A Support Vector Learning-Based Particle Filter Scheme for Target Localization in Communication-Constrained Underwater Acoustic Sensor Networks
por: Li, Xinbin, et al.
Publicado: (2017) -
Multi-Sensor Fusion for Underwater Vehicle Localization by Augmentation of RBF Neural Network and Error-State Kalman Filter
por: Shaukat, Nabil, et al.
Publicado: (2021)