Cargando…
Rolling Bearing Fault Diagnosis Based on Refined Composite Multi-Scale Approximate Entropy and Optimized Probabilistic Neural Network
A rolling bearing early fault diagnosis method is proposed in this paper, which is derived from a refined composite multi-scale approximate entropy (RCMAE) and improved coyote optimization algorithm based probabilistic neural network (ICOA-PNN) algorithm. Rolling bearing early fault diagnosis is a t...
Autores principales: | Ma, Jianpeng, Li, Zhenghui, Li, Chengwei, Zhan, Liwei, Zhang, Guang-Zhu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926698/ https://www.ncbi.nlm.nih.gov/pubmed/33672339 http://dx.doi.org/10.3390/e23020259 |
Ejemplares similares
-
A New Method Based on Time-Varying Filtering Intrinsic Time-Scale Decomposition and General Refined Composite Multiscale Sample Entropy for Rolling-Bearing Feature Extraction
por: Ma, Jianpeng, et al.
Publicado: (2021) -
Fault Feature Extraction and Diagnosis of Rolling Bearings Based on Enhanced Complementary Empirical Mode Decomposition with Adaptive Noise and Statistical Time-Domain Features
por: Zhan, Liwei, et al.
Publicado: (2019) -
Fault Recognition of Rolling Bearings Based on Parameter Optimized Multi-Scale Permutation Entropy and Gath-Geva
por: Wang, Haiming, et al.
Publicado: (2021) -
Weighted Kernel Entropy Component Analysis for Fault Diagnosis of Rolling Bearings
por: Zhou, Hongdi, et al.
Publicado: (2017) -
Fault Diagnosis for Rolling Bearing of Combine Harvester Based on Composite-Scale-Variable Dispersion Entropy and Self-Optimization Variational Mode Decomposition Algorithm
por: Jiang, Wei, et al.
Publicado: (2023)