Cargando…
Generating Datasets for Anomaly-Based Intrusion Detection Systems in IoT and Industrial IoT Networks
Over the past few years, we have witnessed the emergence of Internet of Things (IoT) and Industrial IoT networks that bring significant benefits to citizens, society, and industry. However, their heterogeneous and resource-constrained nature makes them vulnerable to a wide range of threats. Therefor...
Autores principales: | Essop, Ismael, Ribeiro, José C., Papaioannou, Maria, Zachos, Georgios, Mantas, Georgios, Rodriguez, Jonathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926730/ https://www.ncbi.nlm.nih.gov/pubmed/33672108 http://dx.doi.org/10.3390/s21041528 |
Ejemplares similares
-
The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework
por: Fadel, Magdy M., et al.
Publicado: (2022) -
Components and services for IoT platforms: paving the way for IoT standards
por: Keramidas, Georgios, et al.
Publicado: (2016) -
ROAST-IoT: A Novel Range-Optimized Attention Convolutional Scattered Technique for Intrusion Detection in IoT Networks
por: Mahalingam, Anandaraj, et al.
Publicado: (2023) -
Transfer-Learning-Based Intrusion Detection Framework in IoT Networks
por: Rodríguez, Eva, et al.
Publicado: (2022) -
Intrusion Detection in IoT Using Deep Learning
por: Banaamah, Alaa Mohammed, et al.
Publicado: (2022)