Cargando…
A Machine Learning Processing Pipeline for Reliable Hand Gesture Classification of FMG Signals with Stochastic Variance
ForceMyography (FMG) is an emerging competitor to surface ElectroMyography (sEMG) for hand gesture recognition. Most of the state-of-the-art research in this area explores different machine learning algorithms or feature engineering to improve hand gesture recognition performance. This paper propose...
Autores principales: | Asfour, Mohammed, Menon, Carlo, Jiang, Xianta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926772/ https://www.ncbi.nlm.nih.gov/pubmed/33671525 http://dx.doi.org/10.3390/s21041504 |
Ejemplares similares
-
Feature–Classifier Pairing Compatibility for sEMG Signals in Hand Gesture Recognition under Joint Effects of Processing Procedures
por: Asfour, Mohammed, et al.
Publicado: (2022) -
Building Effective Machine Learning Models for Ankle Joint Power Estimation During Walking Using FMG Sensors
por: Heeb, Oliver, et al.
Publicado: (2022) -
k-Tournament Grasshopper Extreme Learner for FMG-Based Gesture Recognition
por: Barioul, Rim, et al.
Publicado: (2023) -
An Intelligent Gesture Classification Model for Domestic Wheelchair Navigation with Gesture Variance Compensation
por: Bandara, H. M. Ravindu T., et al.
Publicado: (2020) -
Developing and implementing the strategy of FMG
por: Tuominen, Kari
Publicado: (2016)