Cargando…
A Unified, One Fluid Model for the Drag of Fluid and Solid Dispersals by Permeate Flux towards a Membrane Surface
The drag of dispersals towards a membrane surface is a consequence of the filtration process. It also represents the first step towards the development of the problem of fouling. In order to combat membrane fouling, it is important to understand such drag mechanisms and provide a modeling framework....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926833/ https://www.ncbi.nlm.nih.gov/pubmed/33671756 http://dx.doi.org/10.3390/membranes11020154 |
_version_ | 1783659553267646464 |
---|---|
author | Salama, Amgad Sun, Shuyu Zhang, Tao |
author_facet | Salama, Amgad Sun, Shuyu Zhang, Tao |
author_sort | Salama, Amgad |
collection | PubMed |
description | The drag of dispersals towards a membrane surface is a consequence of the filtration process. It also represents the first step towards the development of the problem of fouling. In order to combat membrane fouling, it is important to understand such drag mechanisms and provide a modeling framework. In this work, a new modeling and numerical approach is introduced that is based on a one-domain model in which both the dispersals and the surrounding fluid are dealt with as a fluid with heterogeneous property fields. Furthermore, because of the fact that the geometry of the object assumes axial symmetry and the configuration remains fixed, the location of the interface may be calculated using geometrical relationships. This alleviates the need to define an indicator function and solve a hyperbolic equation to update the configuration. Furthermore, this approach simplifies the calculations and significantly reduces the computational burden required otherwise if one incorporates a hyperbolic equation to track the interface. To simplify the calculations, we consider the motion of an extended cylindrical object. This allows a reduction in the dimensions of the problem to two, thereby reducing the computational burden without a loss of generality. Furthermore, for this particular case there exists an approximate analytical solution that accounts for the effects of the confining boundaries that usually exist in real systems. We use such a setup to provide the benchmarking of the different averaging techniques for the calculations of properties at the cell faces and center, particularly in the cells involving the interface. |
format | Online Article Text |
id | pubmed-7926833 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79268332021-03-04 A Unified, One Fluid Model for the Drag of Fluid and Solid Dispersals by Permeate Flux towards a Membrane Surface Salama, Amgad Sun, Shuyu Zhang, Tao Membranes (Basel) Article The drag of dispersals towards a membrane surface is a consequence of the filtration process. It also represents the first step towards the development of the problem of fouling. In order to combat membrane fouling, it is important to understand such drag mechanisms and provide a modeling framework. In this work, a new modeling and numerical approach is introduced that is based on a one-domain model in which both the dispersals and the surrounding fluid are dealt with as a fluid with heterogeneous property fields. Furthermore, because of the fact that the geometry of the object assumes axial symmetry and the configuration remains fixed, the location of the interface may be calculated using geometrical relationships. This alleviates the need to define an indicator function and solve a hyperbolic equation to update the configuration. Furthermore, this approach simplifies the calculations and significantly reduces the computational burden required otherwise if one incorporates a hyperbolic equation to track the interface. To simplify the calculations, we consider the motion of an extended cylindrical object. This allows a reduction in the dimensions of the problem to two, thereby reducing the computational burden without a loss of generality. Furthermore, for this particular case there exists an approximate analytical solution that accounts for the effects of the confining boundaries that usually exist in real systems. We use such a setup to provide the benchmarking of the different averaging techniques for the calculations of properties at the cell faces and center, particularly in the cells involving the interface. MDPI 2021-02-22 /pmc/articles/PMC7926833/ /pubmed/33671756 http://dx.doi.org/10.3390/membranes11020154 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Salama, Amgad Sun, Shuyu Zhang, Tao A Unified, One Fluid Model for the Drag of Fluid and Solid Dispersals by Permeate Flux towards a Membrane Surface |
title | A Unified, One Fluid Model for the Drag of Fluid and Solid Dispersals by Permeate Flux towards a Membrane Surface |
title_full | A Unified, One Fluid Model for the Drag of Fluid and Solid Dispersals by Permeate Flux towards a Membrane Surface |
title_fullStr | A Unified, One Fluid Model for the Drag of Fluid and Solid Dispersals by Permeate Flux towards a Membrane Surface |
title_full_unstemmed | A Unified, One Fluid Model for the Drag of Fluid and Solid Dispersals by Permeate Flux towards a Membrane Surface |
title_short | A Unified, One Fluid Model for the Drag of Fluid and Solid Dispersals by Permeate Flux towards a Membrane Surface |
title_sort | unified, one fluid model for the drag of fluid and solid dispersals by permeate flux towards a membrane surface |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926833/ https://www.ncbi.nlm.nih.gov/pubmed/33671756 http://dx.doi.org/10.3390/membranes11020154 |
work_keys_str_mv | AT salamaamgad aunifiedonefluidmodelforthedragoffluidandsoliddispersalsbypermeatefluxtowardsamembranesurface AT sunshuyu aunifiedonefluidmodelforthedragoffluidandsoliddispersalsbypermeatefluxtowardsamembranesurface AT zhangtao aunifiedonefluidmodelforthedragoffluidandsoliddispersalsbypermeatefluxtowardsamembranesurface AT salamaamgad unifiedonefluidmodelforthedragoffluidandsoliddispersalsbypermeatefluxtowardsamembranesurface AT sunshuyu unifiedonefluidmodelforthedragoffluidandsoliddispersalsbypermeatefluxtowardsamembranesurface AT zhangtao unifiedonefluidmodelforthedragoffluidandsoliddispersalsbypermeatefluxtowardsamembranesurface |