Cargando…

Lipofection-Mediated Introduction of CRISPR/Cas9 System into Porcine Oocytes and Embryos

SIMPLE SUMMARY: Liposome-mediated gene transfer has become an alternative method for establishing a gene targeting framework, and the production of mutant animals may be feasible even in laboratories without specialized equipment. However, whether blastocyst genome editing can be performed by treatm...

Descripción completa

Detalles Bibliográficos
Autores principales: Hirata, Maki, Wittayarat, Manita, Namula, Zhao, Anh Le, Quynh, Lin, Qingyi, Takebayashi, Koki, Thongkittidilok, Chommanart, Tanihara, Fuminori, Otoi, Takeshige
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926877/
https://www.ncbi.nlm.nih.gov/pubmed/33672168
http://dx.doi.org/10.3390/ani11020578
Descripción
Sumario:SIMPLE SUMMARY: Liposome-mediated gene transfer has become an alternative method for establishing a gene targeting framework, and the production of mutant animals may be feasible even in laboratories without specialized equipment. However, whether blastocyst genome editing can be performed by treatment with lipofection reagent, guide RNA, and Cas9, without performing electroporation or microinjection, remains unclear. In this study, we demonstrated that lipofection treatment successfully induced mutation into zygotes during in vitro fertilization and in embryos at the 2- and 4-cell stages. Although liposome-mediated gene editing is a feasible system for use with zona-pellucida-free oocytes/embryos, several challenges must be overcome. ABSTRACT: Liposome-mediated gene transfer has become an alternative method for establishing a gene targeting framework, and the production of mutant animals may be feasible even in laboratories without specialized equipment. However, how this system functions in mammalian oocytes and embryos remains unclear. The present study was conducted to clarify whether blastocyst genome editing can be performed by treatment with lipofection reagent, guide RNA, and Cas9 for 5 h without using electroporation or microinjection. A mosaic mutation was observed in blastocysts derived from zona pellucida (ZP)-free oocytes following lipofection treatment, regardless of the target genes. When lipofection treatment was performed after in vitro fertilization (IVF), no significant differences in the mutation rates or mutation efficiency were found between blastocysts derived from embryos treated at 24 and 29 h from the start of IVF. Only blastocysts from embryos exposed to lipofection treatment at 29 h after IVF contained biallelic mutant. Furthermore, there were no significant differences in the mutation rates or mutation efficiency between blastocysts derived from embryos at the 2- and 4-cell stages. This suggests that lipofection-mediated gene editing can be performed in ZP-free oocytes and ZP-free embryos; however, other factors affecting the system efficiency should be further investigated.