Cargando…
Clustering Single-Cell RNA-Seq Data with Regularized Gaussian Graphical Model
Single-cell RNA-seq (scRNA-seq) is a powerful tool to measure the expression patterns of individual cells and discover heterogeneity and functional diversity among cell populations. Due to variability, it is challenging to analyze such data efficiently. Many clustering methods have been developed us...
Autor principal: | Liu, Zhenqiu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7927011/ https://www.ncbi.nlm.nih.gov/pubmed/33671799 http://dx.doi.org/10.3390/genes12020311 |
Ejemplares similares
-
EC-PGMGR: Ensemble Clustering Based on Probability Graphical Model With Graph Regularization for Single-Cell RNA-seq Data
por: Zhu, Yuan, et al.
Publicado: (2020) -
Regularized estimation of large-scale gene association networks using graphical Gaussian models
por: Krämer, Nicole, et al.
Publicado: (2009) -
Visualizing Single-Cell RNA-seq Data with Semisupervised Principal Component Analysis
por: Liu, Zhenqiu
Publicado: (2020) -
Penalized estimation of the Gaussian graphical model from data with replicates
por: van Wieringen, Wessel N., et al.
Publicado: (2021) -
Joint conditional Gaussian graphical models with multiple sources of genomic data
por: Chun, Hyonho, et al.
Publicado: (2013)