Cargando…
Prediction of newborn’s body mass index using nationwide multicenter ultrasound data: a machine-learning study
BACKGROUND: This study introduced machine learning approaches to predict newborn’s body mass index (BMI) based on ultrasound measures and maternal/delivery information. METHODS: Data came from 3159 obstetric patients and their newborns enrolled in a multi-center retrospective study. Variable importa...
Autores principales: | Lee, Kwang-Sig, Kim, Ho Yeon, Lee, Se Jin, Kwon, Sung Ok, Na, Sunghun, Hwang, Han Sung, Park, Mi Hye, Ahn, Ki Hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7927215/ https://www.ncbi.nlm.nih.gov/pubmed/33653299 http://dx.doi.org/10.1186/s12884-021-03660-5 |
Ejemplares similares
-
Predictors of Newborn’s Weight for Height: A Machine Learning Study Using Nationwide Multicenter Ultrasound Data
por: Ahn, Ki Hoon, et al.
Publicado: (2021) -
Prediction of Emergency Cesarean Section Using Machine Learning Methods: Development and External Validation of a Nationwide Multicenter Dataset in Republic of Korea
por: Wie, Jeong Ha, et al.
Publicado: (2022) -
Ultrasonographic ovarian mass scoring system for predicting malignancy in pregnant women with ovarian mass
por: Lee, Se Jin, et al.
Publicado: (2022) -
Artificial Neural Network Analysis of Spontaneous Preterm Labor and Birth and Its Major Determinants
por: Lee, Kwang-Sig, et al.
Publicado: (2019) -
Application of Artificial Intelligence in Early Diagnosis of Spontaneous Preterm Labor and Birth
por: Lee, Kwang-Sig, et al.
Publicado: (2020)