Cargando…
Along‐tract statistics of neurite orientation dispersion and density imaging diffusion metrics to enhance MR tractography quantitative analysis in healthy controls and in patients with brain tumors
Along‐tract statistics analysis enables the extraction of quantitative diffusion metrics along specific white matter fiber tracts. Besides quantitative metrics derived from classical diffusion tensor imaging (DTI), such as fractional anisotropy and diffusivities, new parameters reflecting the relati...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7927309/ https://www.ncbi.nlm.nih.gov/pubmed/33274823 http://dx.doi.org/10.1002/hbm.25291 |
Sumario: | Along‐tract statistics analysis enables the extraction of quantitative diffusion metrics along specific white matter fiber tracts. Besides quantitative metrics derived from classical diffusion tensor imaging (DTI), such as fractional anisotropy and diffusivities, new parameters reflecting the relative contribution of different diffusion compartments in the tissue can be estimated through advanced diffusion MRI methods as neurite orientation dispersion and density imaging (NODDI), leading to a more specific microstructural characterization. In this study, we extracted both DTI‐ and NODDI‐derived quantitative microstructural diffusion metrics along the most eloquent fiber tracts in 15 healthy subjects and in 22 patients with brain tumors. We obtained a robust intraprotocol reference database of normative along‐tract microstructural metrics, and their corresponding plots, from healthy fiber tracts. Each diffusion metric of individual patient's fiber tract was then plotted and statistically compared to the normative profile of the corresponding metric from the healthy fiber tracts. NODDI‐derived metrics appeared to account for the pathological microstructural changes of the peritumoral tissue more accurately than DTI‐derived ones. This approach may be useful for future studies that may compare healthy subjects to patients diagnosed with other pathological conditions. |
---|