Cargando…

A Micromachined Picocalorimeter Sensor for Liquid Samples with Application to Chemical Reactions and Biochemistry

Calorimetry has long been used to probe the physical state of a system by measuring the heat exchanged with the environment as a result of chemical reactions or phase transitions. Application of calorimetry to microscale biological samples, however, is hampered by insufficient sensitivity and the di...

Descripción completa

Detalles Bibliográficos
Autores principales: Bae, Jinhye, Zheng, Juanjuan, Zhang, Haitao, Foster, Peter J., Needleman, Daniel J., Vlassak, Joost J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7927623/
https://www.ncbi.nlm.nih.gov/pubmed/33717854
http://dx.doi.org/10.1002/advs.202003415
Descripción
Sumario:Calorimetry has long been used to probe the physical state of a system by measuring the heat exchanged with the environment as a result of chemical reactions or phase transitions. Application of calorimetry to microscale biological samples, however, is hampered by insufficient sensitivity and the difficulty of handling liquid samples at this scale. Here, a micromachined calorimeter sensor that is capable of resolving picowatt levels of power is described. The sensor consists of low‐noise thermopiles on a thin silicon nitride membrane that allow direct differential temperature measurements between a sample and four coplanar references, which significantly reduces thermal drift. The partial pressure of water in the ambient around the sample is maintained at saturation level using a small hydrogel‐lined enclosure. The materials used in the sensor and its geometry are optimized to minimize the noise equivalent power generated by the sensor in response to the temperature field that develops around a typical sample. The experimental response of the sensor is characterized as a function of thermopile dimensions and sample volume, and its capability is demonstrated by measuring the heat dissipated during an enzymatically catalyzed biochemical reaction in a microliter‐sized liquid droplet. The sensor offers particular promise for quantitative measurements on biological systems.