Cargando…
Systematic Investigation of Resistance Evolution to Common Antibiotics Reveals Conserved Collateral Responses across Common Human Pathogens
As drug resistance continues to grow, treatment strategies that turn resistance into a disadvantage for the organism will be increasingly relied upon to treat infections and to lower the rate of multidrug resistance. The majority of work in this area has investigated how resistance evolution toward...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7927859/ https://www.ncbi.nlm.nih.gov/pubmed/33106260 http://dx.doi.org/10.1128/AAC.01273-20 |
_version_ | 1783659756248891392 |
---|---|
author | Rodriguez de Evgrafov, Mari C. Faza, Marius Asimakopoulos, Konstantinos Sommer, Morten O. A. |
author_facet | Rodriguez de Evgrafov, Mari C. Faza, Marius Asimakopoulos, Konstantinos Sommer, Morten O. A. |
author_sort | Rodriguez de Evgrafov, Mari C. |
collection | PubMed |
description | As drug resistance continues to grow, treatment strategies that turn resistance into a disadvantage for the organism will be increasingly relied upon to treat infections and to lower the rate of multidrug resistance. The majority of work in this area has investigated how resistance evolution toward a single antibiotic effects a specific organism’s collateral response to a wide variety of antibiotics. The results of these studies have been used to identify networks of drugs which can be used to drive resistance in a particular direction. However, little is known about the extent of evolutionary conservation of these responses across species. We sought to address this knowledge gap by performing a systematic resistance evolution study of the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae) under uniform growth conditions using five clinically relevant antibiotics with diverse modes of action. Evolved lineages were analyzed for collateral effects and the molecular mechanisms behind the observed phenotypes. Fourteen universal cross-resistance and two global collateral sensitivity relationships were found among the lineages. Genomic analyses revealed drug-dependent divergent and conserved evolutionary trajectories among the pathogens. Our findings suggest that collateral responses may be preserved across species. These findings may help extend the contribution of previous collateral network studies in the development of treatment strategies to address the problem of antibiotic resistance. |
format | Online Article Text |
id | pubmed-7927859 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-79278592021-03-10 Systematic Investigation of Resistance Evolution to Common Antibiotics Reveals Conserved Collateral Responses across Common Human Pathogens Rodriguez de Evgrafov, Mari C. Faza, Marius Asimakopoulos, Konstantinos Sommer, Morten O. A. Antimicrob Agents Chemother Mechanisms of Resistance As drug resistance continues to grow, treatment strategies that turn resistance into a disadvantage for the organism will be increasingly relied upon to treat infections and to lower the rate of multidrug resistance. The majority of work in this area has investigated how resistance evolution toward a single antibiotic effects a specific organism’s collateral response to a wide variety of antibiotics. The results of these studies have been used to identify networks of drugs which can be used to drive resistance in a particular direction. However, little is known about the extent of evolutionary conservation of these responses across species. We sought to address this knowledge gap by performing a systematic resistance evolution study of the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae) under uniform growth conditions using five clinically relevant antibiotics with diverse modes of action. Evolved lineages were analyzed for collateral effects and the molecular mechanisms behind the observed phenotypes. Fourteen universal cross-resistance and two global collateral sensitivity relationships were found among the lineages. Genomic analyses revealed drug-dependent divergent and conserved evolutionary trajectories among the pathogens. Our findings suggest that collateral responses may be preserved across species. These findings may help extend the contribution of previous collateral network studies in the development of treatment strategies to address the problem of antibiotic resistance. American Society for Microbiology 2020-12-16 /pmc/articles/PMC7927859/ /pubmed/33106260 http://dx.doi.org/10.1128/AAC.01273-20 Text en Copyright © 2020 Rodriguez de Evgrafov et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Mechanisms of Resistance Rodriguez de Evgrafov, Mari C. Faza, Marius Asimakopoulos, Konstantinos Sommer, Morten O. A. Systematic Investigation of Resistance Evolution to Common Antibiotics Reveals Conserved Collateral Responses across Common Human Pathogens |
title | Systematic Investigation of Resistance Evolution to Common Antibiotics Reveals Conserved Collateral Responses across Common Human Pathogens |
title_full | Systematic Investigation of Resistance Evolution to Common Antibiotics Reveals Conserved Collateral Responses across Common Human Pathogens |
title_fullStr | Systematic Investigation of Resistance Evolution to Common Antibiotics Reveals Conserved Collateral Responses across Common Human Pathogens |
title_full_unstemmed | Systematic Investigation of Resistance Evolution to Common Antibiotics Reveals Conserved Collateral Responses across Common Human Pathogens |
title_short | Systematic Investigation of Resistance Evolution to Common Antibiotics Reveals Conserved Collateral Responses across Common Human Pathogens |
title_sort | systematic investigation of resistance evolution to common antibiotics reveals conserved collateral responses across common human pathogens |
topic | Mechanisms of Resistance |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7927859/ https://www.ncbi.nlm.nih.gov/pubmed/33106260 http://dx.doi.org/10.1128/AAC.01273-20 |
work_keys_str_mv | AT rodriguezdeevgrafovmaric systematicinvestigationofresistanceevolutiontocommonantibioticsrevealsconservedcollateralresponsesacrosscommonhumanpathogens AT fazamarius systematicinvestigationofresistanceevolutiontocommonantibioticsrevealsconservedcollateralresponsesacrosscommonhumanpathogens AT asimakopouloskonstantinos systematicinvestigationofresistanceevolutiontocommonantibioticsrevealsconservedcollateralresponsesacrosscommonhumanpathogens AT sommermortenoa systematicinvestigationofresistanceevolutiontocommonantibioticsrevealsconservedcollateralresponsesacrosscommonhumanpathogens |