Cargando…

Artificial intelligence enabled preliminary diagnosis for COVID-19 from voice cues and questionnairesa)

The COVID-19 outbreak was announced as a global pandemic by the World Health Organization in March 2020 and has affected a growing number of people in the past few months. In this context, advanced artificial intelligence techniques are brought to the forefront as a response to the ongoing fight tow...

Descripción completa

Detalles Bibliográficos
Autores principales: Shimon, Carmi, Shafat, Gabi, Dangoor, Inbal, Ben-Shitrit, Asher
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Acoustical Society of America 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7928231/
https://www.ncbi.nlm.nih.gov/pubmed/33639822
http://dx.doi.org/10.1121/10.0003434
Descripción
Sumario:The COVID-19 outbreak was announced as a global pandemic by the World Health Organization in March 2020 and has affected a growing number of people in the past few months. In this context, advanced artificial intelligence techniques are brought to the forefront as a response to the ongoing fight toward reducing the impact of this global health crisis. In this study, potential use-cases of intelligent speech analysis for COVID-19 identification are being developed. By analyzing speech recordings from COVID-19 positive and negative patients, we constructed audio- and symptomatic-based models to automatically categorize the health state of patients, whether they are COVID-19 positive or not. For this purpose, many acoustic features were established, and various machine learning algorithms are being utilized. Experiments show that an average accuracy of 80% was obtained estimating COVID-19 positive or negative, derived from multiple cough and vowel /a/ recordings, and an average accuracy of 83% was obtained estimating COVID-19 positive or negative patients by evaluating six symptomatic questions. We hope that this study can foster an extremely fast, low-cost, and convenient way to automatically detect the COVID-19 disease.