Cargando…
Evaluation of Task fMRI Decoding With Deep Learning on a Small Sample Dataset
Recently, several deep learning methods have been applied to decoding in task-related fMRI, and their advantages have been exploited in a variety of ways. However, this paradigm is sometimes problematic, due to the difficulty of applying deep learning to high-dimensional data and small sample size c...
Autores principales: | Yotsutsuji, Sunao, Lei, Miaomei, Akama, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7928289/ https://www.ncbi.nlm.nih.gov/pubmed/33679360 http://dx.doi.org/10.3389/fninf.2021.577451 |
Ejemplares similares
-
Decoding semantics across fMRI sessions with different stimulus modalities: a practical MVPA study
por: Akama, Hiroyuki, et al.
Publicado: (2012) -
Prediction of Task-Related BOLD fMRI with Amplitude Signatures of Resting-State fMRI
por: Kannurpatti, Sridhar S., et al.
Publicado: (2012) -
Efficient evaluation of the Open QC task fMRI dataset
por: Etzel, Joset A.
Publicado: (2023) -
A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data
por: Ge, Bao, et al.
Publicado: (2018) -
Small sample sizes reduce the replicability of task-based fMRI studies
por: Turner, Benjamin O., et al.
Publicado: (2018)