Cargando…
MSU-Net: Multi-Scale U-Net for 2D Medical Image Segmentation
Aiming at the limitation of the convolution kernel with a fixed receptive field and unknown prior to optimal network width in U-Net, multi-scale U-Net (MSU-Net) is proposed by us for medical image segmentation. First, multiple convolution sequence is used to extract more semantic features from the i...
Autores principales: | Su, Run, Zhang, Deyun, Liu, Jinhuai, Cheng, Chuandong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7928319/ https://www.ncbi.nlm.nih.gov/pubmed/33679900 http://dx.doi.org/10.3389/fgene.2021.639930 |
Ejemplares similares
-
Multimodal Glioma Image Segmentation Using Dual Encoder Structure and Channel Spatial Attention Block
por: Su, Run, et al.
Publicado: (2020) -
U-Net-Based Medical Image Segmentation
por: Yin, Xiao-Xia, et al.
Publicado: (2022) -
TransU²-Net: An Effective Medical Image Segmentation Framework Based on Transformer and U²-Net
Publicado: (2023) -
MCA-UNet: multi-scale cross co-attentional U-Net for automatic medical image segmentation
por: Wang, Haonan, et al.
Publicado: (2023) -
Retracted: U-Net-Based Medical Image Segmentation
por: Healthcare Engineering, Journal of
Publicado: (2023)